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Abstract 

Denoising astronomical images is a significant challenge in the field of astronomical data 
processing. Image data acquired from astronomical sources typically contains noise from 
various sources. The study aims to investigate the denoising of astronomical images using 
an image-to-image translation approach with AttentionGAN method. This method combines 
attention-guided techniques with a Generative Adversarial Network (GAN) model to 
improve the quality of noisy astronomical images. Attention-guided technique allows the 
model to learn the most important features of the image and guide the image generation 
process. This approach has been tested on several images in different domains, each with 
varying levels of noise. The results shows that AttentionGAN method produces denoised 
images with better and sharper quality than several other denoising methods. Two databases, 
The Panoramic Survey Telescope and Rapid Response System (PAN-STARRS) and the 
Sloan Digital Sky Survey (SDSS), were used in this research. Images acquired from PAN-
STARRS contain noise, while images acquired from SDSS are clean. Overall, this research 
contributes to improving the quality of astronomical images by demonstrating the 
effectiveness of the AttentionGAN method in denoising noisy astronomical images. We 
employed denoising techniques using CycleGAN and AttentionGAN and evaluated them 
using metrics such as PSNR, SSIM, and FID. The analysis showed that the AttentionGAN 
model outperformed CycleGAN. We also conducted ablation studies to further investigate 
the components of the AttentionGAN model. This study provides a foundation for future 
research in the field of astronomical data processing, which has the potential to enhance 
image quality.  
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Introduction  

Astronomical images captured with telescopes play a crucial role in studying 
celestial objects. Astronomers use these images to analyze stars and other astronomical 
objects. Astronomical images are captured using high-resolution Charge-Coupled Device 
(CCD) sensors. CCD sensors work by converting light into electrical signals, resulting in 
digital images. However, the use of CCD sensors can introduce noise which originate 
from various sources including background sky or photon noise caused by low-energy 
sources (Flamary, 2017), atmospheric distortions when capturing images from the Earth's 
surface (Schawinski et al., 2017), and other environmental factors or interferences. The 
amount of astronomical data collected within a year can reach the scale of Terabytes 
(Hao-ran et al., 2017). 

Denoising is crucial in distinguishing celestial objects from noise during analysis, 
making it an essential post-processing step in astronomy. One of the denoising methods 
is Bayesian least squares - Gaussian scale mixtures (BLS-GSM). However, this method 
is not suitable for astronomical images (Burger et al., 2011). Other conventional methods 
such as Gaussian filtering have also been used in denoising astronomical images, but they 
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often come with a trade-off of producing more blurred images (Laine et al., 2021). These 
methods also frequently fail to preserve edges, which are crucial components in the 
analysis process. When dealing with astronomical images, it is essential to retain edges 
while simultaneously removing noise and preserving the texture patterns of the images 
(Misra et al., 2018). In this regard, machine learning approaches have shown great 
potential in denoising by achieving high performance and avoiding blur through direct 
learning from the data itself (Laine et al., 2021).  

Machine learning-based denoising approaches include the use of Convolutional 
Neural Networks (CNNs). CNNs can also be applied to tasks such as style transfer (Chen 
et al., 2017), super-resolution (Zhang et al., 2019), and segmentation (Carreira et al., 
2012). For image-to-image mapping, networks can consist of convolutional (Flamary, 
2017) and deconvolutional layers (Wang et al., 2023). Other methods that can be 
employed include Generative Adversarial Networks (GANs) (Lin et al., 2021) and U-net 
(Vojtekova et al., 2021). 

Lin et al. (2020) stated that denoising research can be conducted using image-to-
image mapping or image translation approaches. Denoising using image-to-image 
mapping, such as GAN, has proven to restore missing features in degraded images 
(Schawinski et al., 2017). Recent studies on denoising astronomical images have utilized 
paired input images, consisting of clean, noise-free images as ground truth and the same 
images with additional noise. Examples of such research include Schawinski et al. (2017) 
which added artificial degradation to the ground truth images, Vojtekova et al. (2020) 
which used images with shorter exposure times, and Flamary (2017) which introduced 
Gaussian noise. These studies employed GAN and U-Net methods.  

Prior study also uses GAN to do denoising. Schawinski et al. (2017) employed 
GAN to restore features in astronomical images by denoising images with artificial noise. 
Fussell and Moews (2019) utilized chained GANs to generate high-resolution synthetic 
galaxy images, using a deep convolutional GAN and StackGAN architecture. Mustafa et 
al. (2019) applied CosmoGAN in the task of generating weak gravitational lensing 
convergence maps, which are a visual representation of the gravitational lensing effect on 
galaxy distribution. By altering observed galaxy density through gravitational lensing 
effect, scientists can measure the distribution of matter in the universe. The successful 
applications of GAN in astronomy research suggest a promising future in exploring its 
potential for other astronomical tasks. 

In astronomy, obtaining paired images can be challenging as survey telescopes are 
often located in different positions on the Earth's surface, resulting in varying 
environmental and sky conditions. Therefore, research on image translation for unpaired 
astronomical images is crucial for efficient research. Denoising with unpaired images is 
relatively uncommon, but studies like GAN-based image translation (Lin et al., 2021) are 
emerging in astronomy. As a result, denoising methods for unpaired images are essential 
in processing astronomical data. One such method is the use of GANs with the cycle-
consistency loss principle in image translation, as demonstrated by Lin et al. (2021). The 
study utilizes GANs to translate astronomical images across different domains by 
reconstructing noise in the target domain. In other domains outside of astronomy, image 
translation research has frequently employed the cycle-consistency loss principle. Tang 
et al. (2019) point out a limitation of Cycle-GAN, where certain feature elements receive 
too much attention compared to other focus and main features that cannot be captured 
quickly. Attention modules have been added to GAN architectures several times before. 
Jiang et al. (2022) used Cycle-GAN with the addition of a self-attention mechanism. 
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Compared to several standard Cycle-GAN methods, the proposed method has been shown 
to produce better results in terms of image quality, visual appeal, and noise reduction. 

The use of CycleGAN has proven to be effective in denoising without the need for 
paired images. However, it tends to overemphasize certain features in the images, leading 
to distortions. This limitation affects the capture of essential features in a short period. To 
address this, attention modules have been added to the generator in CycleGAN, as 
demonstrated in the research by Tang et al. (2019). Tang et al. (2023) used Attention-
Guided Generative Adversarial Networks (GANs) for unpaired image-to-image 
translation. It utilizes an attention-guided technique that allows the GAN model to learn 
more important features in the input and output images. An attention map is generated 
from the input image and used to guide the process of generating the output image. 
Compared to other GAN methods, Attention-GAN produces more realistic and higher 
quality images with better results. Evaluations of these attention-based methods have 
shown superior performance compared to traditional CycleGAN in various image 
translation tasks. However, AttentionGAN has not been applied to the domain of 
astronomical images and has primarily been used for denoising in general contexts. 
Inspired by the work of Tang et al. (2023), we aim to explore denoising through image 
translation using the AttentionGAN method in the domain of astronomical images. 
 
Research Methods 
CycleGAN 

CycleGAN is a deep learning algorithm used for image domain transfer without 
requiring paired training data (Zhu et al., 2017). It uses two Generative and two 
Discriminative models to convert between two different image domains. One of 
CycleGAN's main features is its ability to convert between vastly different domains, such 
as from horse to zebra images or from summer to winter images. The algorithm achieves 
this by using Unsupervised learning, allowing the model to learn feature representations 
from both domains without the need for paired data. CycleGAN learns the mapping 
function between two domains, X and Y. 

Compared to standard GAN, Cycle-GAN has two main improvements (Jiang et 
al., 2022). The first improvement is on the input received by the Generator. In standard 
GAN, the input is random noise, which means that only random images can be generated 
and the quality of the generated image cannot be controlled. The second improvement is 
on the required training data. GAN requires paired training data, which is difficult to 
obtain in some cases (Jiang et al., 2022). Unlike GAN, Cycle-GAN does not require 
paired images in the training process. The principle of Cycle-GAN is based on the cycle-
consistency loss using the loss function of GAN. The adversarial loss controls the 
generated images to approach the target images, and the cycle-consistency loss is used to 
maintain the content structure of the input image and the feature of the target image. When 
generating an image, Cycle-GAN is trained to find potential connections between 
multiple feature domains and thus transform it to the relevant domain based on the input 
image (Zhu et al., 2020). 

CycleGAN consists of two generators, namely G and F, and two discriminators, 
namely DX and DY. The generator GX learns the mapping from domain X to domain Y, 
while the generator GY learns the mapping from domain Y to domain X. The discriminator 
DY is used to determine whether the input image is generated by GX, i.e., GX(x), and 
provides feedback to the generator GX. Similarly, the discriminator DX is used to 
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determine whether the input image is generated by GY, i.e., GY(y), and provides feedback 
to the generator GY. The architecture of CycleGAN can be seen in Figure 1. 

 
 

Figure 1. The diagram illustrates the structure of the CycleGAN network 
 

The objective function of CycleGAN is divided into two parts: the first part is the 
adversarial loss from the GAN with two mapping functions, and the second part is the 
cycle-consistency loss. The adversarial loss of Generator GX and discriminator DY is 
formulated by equation 1. 

𝐿!"#(𝐺$, 𝐷%, 𝑋, 𝑌) = 𝐸&∼(!"#"(&)[log𝐷% (𝑦)] + 𝐸+∼(,-.-(+) 2log 31 − 𝐷%6𝐺$(𝑥)89:
 (1) 

 

In equation 1, GX is the generator, DY is the discriminator, X and Y are the domains 
corresponding to x ∈ X and y ∈ Y. pdata(x) represents the distribution of the dataset X, and 
E_x⁓Pdata(x) represents the mean value in the case of pdata(x) on x. pdata(y) represents the 
distribution of the dataset Y, and E_y⁓Pdata(y) represents the mean value in the case of 
p_data(y) on y. GX(x) is the generator GX that generates an image from domain X to domain 
Y. The adversarial loss of Generator GY and discriminator DX is formulated by equation 
(2). 

𝐿!"#(𝐺%, 𝐷$, 𝑋, 𝑌) = 𝐸+∼(!"#"(+)[log𝐷$(𝑥)] + 𝐸&∼(,-.-(&) 2log 31 − 𝐷$6𝐺%(𝑦)89:
 (2) 

 
In equation (2), GY is the generator, DX is the discriminator, X and Y are the two 
bidirectional domains with x ∈ X and y ∈ Y. pdata(x) represents the distribution of the 
dataset X, and Ex~Pdata(x) represents the mean value in the case of pdata(x) at x. pdata(y) 
represents the distribution of the dataset Y, and Ey~Pdata(y) represents the mean value in the 
case of pdata(y) at y. GY(x) is the generator G that generates an image from domain X to 
domain Y. 
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In the training process, CycleGAN uses a loss function to measure the error 
between the generated images by the generator and the original images. This algorithm 
employs a cycle consistency loss technique, which allows the model to produce images 
that can be translated back to their original domain. By using these techniques, CycleGAN 
can generate images with relatively high quality in the cross-domain conversion process 
and has been applied in various applications, such as satellite image-to-map image 
conversion and artistic style transfer between different domains. 

In CycleGAN, to address the inconsistency between the output distribution and the 
target distribution, a loss function called cycle-consistency loss is proposed to enforce the 
relationship between the generator input and output. The formulation of the cycle-
consistency loss in CycleGAN is given by equation (3). 

𝐿/&/(𝐺$, 𝐺%) = 𝐸+∼(!"#"(+) 2;<𝐺%6𝐺$(𝑥)8 − 𝑥<;0
: + 𝐸&∼(,-.-(&) × 2;<𝐺$6𝐺%(𝑦)8 − 𝑦<;0

: (3) 

 
In equation (3), GX and GY are the generators, X and Y are the image domains with x ∈ X 
and y ∈ Y. pdata(x) represents the distribution of the dataset X, and Ex~Pdata(x) represents the 
mean value in the case of pdata(x) when x is sampled. pdata(y) represents the distribution of 
the dataset Y, and Ey~Pdata(y) represents the mean value in the case of pdata(y) when y is 
sampled. GX(GY(y)) is the generator GX that takes an image from domain Y generated by 
the generator GY(y) and produces an image in domain X. The result of this generator is an 
image in domain X. GY(GX(x)) is the generator GY that takes an image from domain X 
generated by the generator GX(x) and produces an image in domain Y. The result of this 
generator is an image in domain Y. The final loss function in CycleGAN is formulated in 
equation (4) 

𝐿("1,"2,$1,$2) = 𝐿"&'(𝐺( , 𝐺) , 𝐷( , 𝐷)) + 𝐿*+*(𝐺( , 𝐺))  (4) 

 
AttentionGAN 
 AttentionGAN (Tang et al., 2023) follows the principle of cycle-consistency loss 
with two generators, G and F, and two discriminators as shown in Figure 2. It consists of 
two sub-networks each, responsible for generating attention masks and content masks. G 
consists of a parameter-sharing encoder GE, an attention mask generator GA, and a content 
mask generator GC. GE aims to extract low-level and high-level feature representations. 
GC aims to generate multiple intermediate content masks. GA attempts to generate 
multiple attention masks. Both generators have their own network parameters and do not 
interfere with each other. The attention mask generator GA aims to generate n - 1 
foreground attention masks A,-  and one background attention mask A,.. By doing so, the 
network can simultaneously learn to generate new focused objects while maintaining the 
background in the input image.  
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Figure 2. The diagram illustrates the structure of the AttentionGAN generator network 
 
Feature map m extracted by GE is consumed by the generator GC to generate n - 1 content 
masks 𝐶+

/ , followed by the activation function Tanh(.). This process is formulated by 
equation (5). 

𝐶+
/ = 𝑇𝑎𝑛ℎ0𝑚𝑊0

/ + 𝑏0
/4  (5) 

 
where f = 1, . . . , n - 1, and the convolution operation is performed with convolution filters 

𝑊0
/ , 𝑏0

/
/12

342 t. Thus, the n-1 content masks and the input image x can be considered as 

parts of the candidate output image. 
 On the other hand, the feature map m is consumed by a group of filters W5

- , b5- -12
642 

to generate the corresponding n attention masks. This process is formulated by equation 
(6). 

𝐴+ = Softmax0𝑚𝑊&
/ + 𝑏&

/4 (6) 

 
where f = 1, . . . , n, and Softmax(.) is the channel-wise softmax function for normalization. 
The attention masks A, are then divided into n - 1 foreground attention masks A,-  and one 
background attention mask 𝐴+7  along the channel dimension. It should be noted that the 
background attention mask and the n - 1 generated foreground attention masks are 
complementary to each other, but the n - 1 foreground attention masks generated do not 
complement each other. 
 All attention masks will be multiplied by the content masks to obtain the final 
target output. This process is formulated by equation (7). 

𝐺(𝑥) = ∑ 0𝐶+
/ ∗ 𝐴+

/4342
/12 + 𝑥 ∗ 𝐴+7   (7) 

 
The formulation of the generator F and the input image y can be expressed by equation 
(8). 

𝐹(𝑦) = ∑ 0𝐶8
/ ∗ 𝐴8

/4342
/12 + 𝑦 ∗ 𝐴87  (8) 
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where a total of n attention masks are also generated by the channel-wise softmax 
activation function for normalization. 
  After G(x) generated by the generator G, it needs to be mapped back to the original 
domain to reduce the possible mappings that the model can perform. AttentionGAN has 
another generator, which is F. It has a similar structure to the generator G and also consists 
of three sub-networks: a parameter sharing encoder FE, attention mask generator FA, and 
content mask generator FC. FC will attempt to generate n - 1 content masks, and FA will 
attempt to generate n background attention mask and foreground attention masks. Then, 
these masks are combined so that the image G(x) can reconstruct the original input image 
x. This process is formulated by equation (9). 

𝐹0𝐺(𝑥)4 = ∑ 0𝐶8
/ ∗ 𝐴8

/4342
/12 + 𝐺(𝑥) ∗ 𝐴87 (9) 

 
where the final image F(G(x)) will be similar to the original image x. Image y is 
formulated by equation (10). 

𝐺0𝐹(𝑦)4 = ∑ 0𝐶+
/ ∗ 𝐴+

/4342
/12 + 𝐹(𝑦) ∗ 𝐴+7  (10) 

 
where the final image G(F(y)) will be similar to the original image y. Optimization 
function of AttentionGAN formulized by equation (11). 

ℒ = ℒ"&' + λ*+*9: ∗ ℒ*+*9: + λ;< ∗ ℒ;<  (11) 

 
where ℒ"&' , ℒ*+*9:  and ℒ;<  is GAN, cycle-consistency and identity preserving loss. 
λ*+*9: and λ;< are parameter controlling relative relationship between every term in the 
model. 
 
Evaluation Metrics 
  To assess the performance of the researched model, a qualitative evaluation is 
conducted using the Peak Signal to Noise Ratio (PSNR), Structural Similarity Index 
(SSIM), and Fréchet Inception Distance (FID). PSNR is calculated by equation (12) 

𝑃𝑆𝑁𝑅 = 10 log2= N
>345678954
:

?@A
O
 (12) 

 
While MSE calculated by equation (13) 

𝑀𝑆𝐸 = 2
B3
∑ ∑ [𝐼<:3C;D:<(𝑖, 𝑗) − 𝐼EFGEH(𝑖, 𝑗)]I

342
J1=

B42
;1=

  (13) 

 
where m and n represent the dimensions of the images Idenoised and Itruth, respectively. 
Idenoised is the denoised image, Itruth is the ground truth image, and Ldenoised is the maximum 
gray level value of the denoised image Idenoised. The Structural Similarity Index (SSIM) is 
calculated using the equation (14) 
 

𝑆𝑆𝐼𝑀(𝑖, 𝑗) = X𝑙(𝑖, 𝑗)K ⋅ 𝑐(𝑖, 𝑗)L ⋅ 𝑠(𝑖, 𝑗)M] (14) 

 
where s represents the structure, c represents the contrast, and l represents the luminance. 
Structure, contrast, and luminance. 
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  Evaluation is also performed using FID (Fréchet Inception Distance). FID is an 
evaluation metric used to assess the quality of images generated by generative models. 
FID measures the distance between the distributions of real and generated images in the 
feature space, which is calculated using a pre-trained Inception-V3 classification network 
on the ImageNet dataset. In the field of astronomy, ImageNet weights are commonly used 
as pre-trained models for classifying celestial objects. Studies such as Martinazzo et al. 
(2020) and Farrens et al. (2022) used ImageNet weights for star/galaxy object 
classification using CNN architectures and compared models with fine-tuning and models 
without fine-tuning. From these studies, it is known that models with ImageNet weights 
can still extract features from astronomical images. FID is calculated using the equation 
(15). 

𝐹𝐼𝐷 = |µ − µN|I + 𝑡𝑟 bΣ + ΣN − 2(ΣΣN)
;
:e  (15) 

 
where N(μ, Σ) is the multivariate normal distribution estimated using Inception V3 
(Szegedy et al., 2016) calculated on real images, and N(μw, Σw) is the multivariate normal 
distribution calculated using Inception V3 on generated images. Qualitative evaluation is 
also conducted by observing and comparing the denoised images obtained using 
CycleGAN and AttentionGAN with the ground truth images. Qualitative analysis is also 
performed to check for missing objects. 
 
Results and Discussiom 
Dataset 

The data acquisition process begins with obtaining 700 celestial object 
coordinates. Out of these 700 coordinates, they are then divided into two sets, each 
containing 350 sky coordinates. These two sets are utilized to acquire data from two data 
sources, namely the Sloan Digital Sky Survey (SDSS) and the Panoramic Survey 
Telescope and Rapid Response System (Pan-STARRS). The SDSS images represent 
clean image data, while the Pan-STARRS images contains noises. This is done to ensure 
that the acquired images are unpaired. These two sets of images will then serve as the 
training data and input into the CycleGAN and AttentionGAN models. 

As part of the evaluation process, a total of 150 distinct sky coordinate data points 
from the training data are used. These data points are utilized to obtain noised images 
sourced from Pan-STARRS, as well as ground truth images sourced from SDSS. 
Therefore, during the evaluation process, the generated images from Pan-STARRS will 
be compared to the corresponding images from SDSS with the same sky coordinates, 
ensuring that the displayed objects are also identical. 

 
Evaluation using PSNR, SSIM and FID 

A total of 700 data points are used for training, consisting of 350 SDSS images 
and 350 PANSTARRS images. Subsequently, the testing data is obtained by selecting 
150 images from PANSTARRS as the noisy images and corresponding images from 
SDSS as the ground truth. The experiments for each method are repeated five times, and 
the average of each evaluation metric is calculated. 
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Table 1. Quantitative evaluation of the denoised image results using CycleGAN and 
AttentionGAN 

Images PSNR SSIM FID 
SDSS (clean) 27.696 0.037 163.166 
PanSTARRS (noised) 100 1.0 12.924 
CycleGAN result 34.554 0.616 133.672 
AttentionGAN result 34.725 0.661 49.697 

 
The PSNR evaluation metric is calculated by comparing the denoised images 

produced by both methods (CycleGAN and AttentionGAN) and comparing them to the 
clean images. The PSNR values of the noisy and clean images are also computed to 
measure the level of difference. Compared to CycleGAN, AttentionGAN has a higher 
average PSNR value of  34.725, while CycleGAN has an average PSNR value of 34.554. 
When considering individual images, AttentionGAN achieves the highest PSNR value of 
36.821, as shown in Figure 3(c). For the same source image, CycleGAN yields a PSNR 
value of 36.184, as indicated in Figure 3(b). 
 

    

(a) Noised image (b) CycleGAN result (c) AttentionGAN result (d) Ground truth 
 

Figure 3. Image that has highest PSNR value using AttentionGAN, compared with 
original noised image, CycleGAN result and ground truth image 

 
 Using qualitative analysis, the images generated by the AttentionGAN method 
exhibit better quality. In the denoised image produced by AttentionGAN, five objects are 
detected, with two bright objects in the middle and left, and three dimmer objects in the 
bottom-right. When compared to the ground truth image, the number of detected objects 
appears to be the same. In contrast, when comparing it to the denoised image using 
CycleGAN, only two objects are detected in the middle and left. This suggests that there 
are celestial objects missing in the denoised image produced by CycleGAN. 
 

    

(a) Noised image (b) CycleGAN result (c) AttentionGAN result (d) Ground truth 
 

Figure 4. Image that has highest PSNR value using CycleGAN, compared with original 
noised image, AttentionGAN result and ground truth image 
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The highest PSNR value obtained with the CycleGAN method is 36.558, as shown 
in Figure 4(b). Meanwhile, with the AttentionGAN method, a slightly lower PSNR value 
of 36.171 is achieved, as indicated in Figure 4(c). From a qualitative standpoint, two 
celestial objects are detected in the bottom-right region when compared to the ground 
truth image. Both the AttentionGAN and CycleGAN denoised images successfully 
remove noise without eliminating the visible celestial objects. However, there are 
positional changes between the images produced by the two methods. The largest 
positional differences are observed in the CycleGAN denoised image, while the positional 
changes in the AttentionGAN result are less pronounced. 

 
    

(a) Noised image (b) CycleGAN result (c) AttentionGAN result (d) Ground truth 
 

Figure 5. Image that has lowest PSNR value using both CycleGAN and AttentionGAN, 
compared with original noised image and ground truth image 

 
The lowest PSNR values for CycleGAN and AttentionGAN in denoising are 

29.888 and 30.641, respectively, for the same source image as shown in Figure 5(b) and 
Figure 5(c). In the ground truth image, it can be observed that there are five visible 
celestial objects. Four objects form a straight line from the top-right to the bottom, while 
one object is located on the far left. In the AttentionGAN result, the visible celestial 
objects are preserved, but this method introduces new reddish artifacts on the left side. 
With the CycleGAN method, no new artifacts are apparent, but it only retains three visible 
celestial objects. 

 
    

(a) Noised image (b) CycleGAN result (c) AttentionGAN result (d) Ground truth 
 

Figure 6. Image that has highest SSIM value using AttentionGAN, compared with original 
noised image, CycleGAN result and ground truth image 

 
Using the SSIM evaluation metric, the average value obtained during the denoising 

process with the CycleGAN method is 0.616. This value is smaller compared to the 
AttentionGAN method, which has an average SSIM value of 0.661. Considering 
individually, the highest SSIM value in the AttentionGAN method is 0.768, as shown in 
Figure 6(c). For the same noisy image, the CycleGAN method yields an SSIM value of 
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0.618, as indicated in Figure 6(b). The smallest SSIM value in the AttentionGAN result 
is 0.542, depicted in Figure 5(c). 

Looking at the SSIM values for each image, the highest SSIM value of 0.691 is 
obtained with the CycleGAN method, as shown in Figure 7(b). With the AttentionGAN 
method, a relatively higher SSIM value of 0.740 is achieved, as indicated in Figure 7(c). 
The smallest SSIM value for CycleGAN is 0.311, depicted in Figure 5(b). 

 
    

(a) Noised image (b) CycleGAN result (c) AttentionGAN result (d) Ground truth 
 

Figure 7. Image that has highest SSIM value using CycleGAN, compared with original 
noised image, AttentionGAN result and ground truth image 

 
 Using the FID evaluation metric, the FID score for the CycleGAN generated 
images is 133.673. The FID score for the AttentionGAN generated images is better, with 
a value of 49.697. The FID scores for the noisy and clean images are also calculated to 
assess the level of difference. For the noisy image, the FID score is 163.167, while for the 
clean image, the FID score is 12.924. 

A t-test was conducted to analyze the significance of differences in multiple 
evaluation metrics based on the five conducted experiments. The t-test was performed 
with a significance level parameter α set to 0.05. The t-test was calculated involving the 
results of both the PSNR and SSIM metrics for the denoised images generated by 
CycleGAN and AttentionGAN. The obtained p-value for the PSNR metric is 0.087, while 
the p-value for the SSIM metric is 0.117. Considering that both p-values are greater than 
α, it can be concluded that the denoising results using both methods do not exhibit 
statistically significant differences, even though the denoising results with AttentionGAN 
are superior. Although the t-test results do not indicate a significant difference, the 
denoising technique using AttentionGAN is more capable of preserving celestial objects 
compared to CycleGAN. This is crucial for astronomical scientific analysis. 

 
Ablation Study 

We conducted an ablation analysis to examine the effects of component changes 
in the AttentionGAN model. In this case, changes were made to the generator component 
in generating denoised images, including: (1) removing the background mask component 
in the design (9f), (2) using only one foreground mask and one background mask (1f1b), 
and (3) using only one background mask without any foreground mask (1b). These three 
ablation processes were then analyzed using the evaluation metrics PSNR, SSIM, and 
FID. Furthermore, an error analysis was performed on all evaluation metrics. The 
evaluation values for the three ablation models are presented in Table 2. 
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Table 2. Quantitative evaluation of the AttentionGAN-Full model compared to the ablated 
models 9f, 1f1b, and 1b. 

Model PSNR (p-value) SSIM (p-value) FID (p-value) 
AttentionGAN-Full 34.72 0.66 49.70 
AttentionGAN-9f 34.76 (0.80) 0.70 (0.12) 32.95 (0.01) 
AttentionGAN-1f1b 33.49 (0.14) 0.64 (0.69) 42.47 (0.09) 
AttentionGAN-1b 27.63 (1.7 ×10−7) 0.03 (2.2 ×10−6) 94.73 (1.9 ×10−5) 

 
From the first ablation result using the combination of 9f, there was an 

improvement in the average values of PSNR, SSIM, and FID. The average values of 
PSNR, SSIM, and FID for the ablated model 9f were 34.76, 0.70, and 32.95, respectively. 
The resulting t-test p-values between AttentionGAN-Full and AttentionGAN-9f were 
0.80 for PSNR, 0.12 for SSIM, and 0.01 for FID. In the second ablation with the 
combination of 1f1b, the average values of PSNR, SSIM, and FID relatively decreased, 
with average values of 33.49, 0.64, and 42.47, respectively. The t-test p-values were 0.14 
for PSNR, 0.69 for SSIM, and 0.09 for FID. Both results indicate that the absence of a 
background mask produced by the generator improves the quality of denoised images, 
albeit not significantly based on the p-values. The same applies to the reduction in the 
number of foreground masks in the denoised images. 

In the third ablation, there was a significant decrease in the values of PSNR, SSIM, 
and FID. The average values of PSNR, SSIM, and FID resulting from the third ablation 
were 27.63, 0.03, and 94.73, respectively. These results indicate that the absence of a 
foreground mask has a significant impact on the denoising technique using the 
AttentionGAN method. Among the three ablated models, the AttentionGAN-9f model 
has better evaluation scores compared to the other ablated models. For each denoised 
image, the highest PSNR and SSIM values are 37.21 and 0.79, respectively. On the other 
hand, the lowest PSNR and SSIM values are 30.44 and 0.48, respectively. 

Next, to examine the impact of different numbers of foreground masks used, an 
additional ablation study was conducted with the combinations of 4 foreground masks 
and 1 background mask (4f1b), as well as 7 foreground masks and 1 background mask 
(7f1b). The obtained results can be seen in Table 3. 

 
Table 3. Quantitative evaluation of the AttentionGAN-Full model compared to the ablated 

models 1f1b, 4f1b, 7f1b. 
Model PSNR (p-value) SSIM (p-value) FID (p-value) 
AttentionGAN-Full 34.72 0.66 49.70 
AttentionGAN-1f1b 33.49 (0.14) 0.64 (0.69) 42.47 (0.09) 
AttentionGAN-4f1b 34.48 (0.36) 0.69 (0.41) 42.17 (0.11) 
AttentionGAN-7f1b 33.44 (0.08) 0.63 (0.45) 50.29 (0.91) 

 
In Table 3, the best PSNR and SSIM values were obtained for the ablation model 

with a combination of 4 foreground masks and 1 background mask. These results were 
obtained after 5 experimental trials. However, these values are still lower compared to 
the ablation model with the combination $9f$ and the AttentionGAN-Full model. Based 
on the p-value for PSNR, there is no significant difference between the three ablation 
models. 
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Conclusion 
In terms of the evaluation metrics PSNR, SSIM, and FID, the denoised 

astronomical images using AttentionGAN outperform the previously used model, 
CycleGAN. Additionally, after conducting t-test error analysis and ablation studies, it 
could be summarized that the differences in the average values of PSNR, SSIM, and FID 
between AttentionGAN and CycleGAN are considered statistically insignificant based on 
the p-value obtained from the t-test error analysis. Furthermore, the absence of 
background or foreground masks in the AttentionGAN generative model significantly 
affects the production of denoised images. Through the ablation study, it was found that 
the best average values of PSNR, SSIM, and FID are achieved when the generative model 
uses nine foreground masks. In terms of qualitative analysis, the AttentionGAN method 
performs better in preserving the position and shape of celestial objects. On the other 
hand, CycleGAN is more effective in reducing noise, albeit with the trade-off of changes 
in the position of celestial objects and the loss of some celestial objects. 
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