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Abstrak 

The boundedness of fractional integral operator Iα on ℝ was introduced for the first 

time by Hardy G.H and Littlewood J.E (1928). In their evidence proof, Hardy and 

Littlewood used maximal operator that later known Hardy-Littlewood inequation. 

They proved that Iαwas limited from the Lebesgue’s space Lp(ℝn) to the space  

Lq(ℝn)  with 0 ≤ α ≤ n  and 1

p
−

1

q
=

α

n
.  In 1938, a mathematician C.B Morrey 

introduced one of space, namely the Morrey’s space with notation Lp,(ℝn). This 

paper will elaborate the Morrey’s space and the boundedness of Iα toward the classic 

Morrey’s space by benefitted the Hardy-Littlewodd maximal operator. 

 

Keywords: Boundedness, Fractional Integral Operator, the maximal operator of Hardy 

Littewood, Minskowski inequation, Holder inequation, Lebesgue’s space,  

 

Introduction  

In 1886, Marcell Riesz introduced one function operator known as the fractional 

integral operator 𝐼𝛼 that is: 

For example 𝑓 real-valued function on ℝ𝑛. for a, 0 < 𝛼 < 𝑛 dan 𝑥 ∈ ℝ𝑛, fractional 

integral operator 𝐼𝛼 defined as follows: 

 

𝐼𝛼𝑓(𝑥) = ∫
𝑓(𝑦)

|𝑥 − 𝑦|𝑛−𝛼
𝑑𝑦  

ℝ𝑛

 

 

Furthermore, this fractional integral operator is often known as the Riesz potential. 

The problem studied related to the fractional integral operator above is a limitation 

problem. As is known, the operator 𝑇 from space 𝑋 to space 𝑌 said to be limited, if any 

𝑀 > 1  such that ‖𝑇𝑥: 𝑌‖ ≤ 𝑀‖𝑥‖ with ‖𝑥: 𝑋‖  noting norms 𝑥  in room 𝑋 . Then the 

operators 𝑇 is said to be limited in space 𝑋, If 𝑇 limited from space 𝑋 to space𝑋. 

The limitation of an operator is a property that is expected to be met, because this 

property leads to conditions that are interesting to study. For example when working with 

differential equations or integral equations, the limitations of an operator can provide an 
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understanding of certain physical phenomena. Meanwhile in the field of computing, 

computing will be much easier if you work with a limited number of operators. 

For the first time the limitations of the fractional integral operator on \mathbb{R} 

were proved by Hardy G.H and Littlewood J.E (1928). In their proof, Hardy and 

Littlewood used the maximal (function) operator which became known as the Hardy-

Littlewood inequality. 

Furthermore, the limitations of the fractional integral operator 𝐼𝛼 proved by them in 

one of the homogeneous spaces, namely from the Lebesgue space 𝐿𝑝(ℝ𝑛)  to space 

𝐿𝑞(ℝ𝑛) with 0 ≤ 𝛼 ≤ 𝑛 And 1
𝑝
−

1

𝑞
=

𝛼

𝑛
. Connection 𝑝 And 𝑞 always used in proof of the 

limitations of the fractional integral operator. Furthermore, in 1930 the limitations in the 

Lebesgue space were refined by Sobolev, so that the important result he obtained was 

called the Hardy-Littlewood-Sobolev inequality. Several years after that, in 1937 N. 

Wiener reintroduced the maximal operator, but for the case of a higher dimensional 

Euclidean space. 

In 1938, a mathematician named C.B. Morrey introduced one of the well-known 

spaces to date, namely the Morrey space denoted by 𝐿𝑝,(ℝ𝑛) (Lina, 2013 hal 1). This 

space is often encountered when studying the Schodinger operator and potential theory 

where the Morrey space is an extension of the Lebesgue space. After Hardy-Littlewood-

Sobolev, the limitations of the fractional integral operator 𝐼𝛼 further developed by D.R. 

Adams in the Morrey room. This result was then proven again by Chiarenza-Frasca using 

the Fefferman-Stein inequality. Chiarenza-Frasca succeeded in proving the limitations of 

the fractional integral operator from Morrey space 𝐿𝑝,(ℝ𝑛) to space 𝐿𝑞,(ℝ𝑛). 

Based on the description above, this paper discusses whether the fractional integral 

operator has the same limitations in the previous function space, namely the Lebesgue 

space. 𝐿𝑞(ℝ𝑛). Furthermore, what conditions must be met so that the fractional integral 

operator is confined to the Morrey space. 

 

Research Methods  

1. Morrey Room 𝑳𝒒,(ℝ𝒏) 

The Morrey space is the set of all local Lebesgue integrated functions with an 

expansion value of a finite q-norm. To define a Morrey space, it is necessary to define 

a local Lebesgue space 𝐿𝑙𝑜𝑐
𝑞 (ℝ𝑛). However, before defining the local Lebesgue space, 

it is necessary to define the Lebesgue space first 𝐿𝑞(ℝ𝑛) namely the space that contains 

functions equipped with a q-norm whose value is up to ℝ𝑛 . According to Kevin 

(2014:1) Lebesgue room𝐿𝑞(ℝ𝑛) (named after its discoverer, Henry Lebesgue) is a 

scalable function space which is a natural embodiment of a finite dimensional vector 

space equipped with norm−𝑞, ‖. ‖𝑞
. Erwin Kreyszig (1978:61) defines a Lebesgue 

space and says that a Lebesgue space is a Banach space. The following is a definition 

of a Lebesgue space 𝐿𝑞(ℝ𝑛). 
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Lebesgue Room 𝑳𝒒(ℝ𝒏) 

For 1 ≤ 𝑞 < ∞,  Lebesgue room 𝐿𝑞(ℝ𝑛) contains all scalable functions f on ℝ𝑛 that 

fulfills ‖𝑓‖𝑞 < ∞, with, 

‖𝑓‖𝑞 = (∫ |𝑓(𝑥)|𝑞𝑑𝑥
𝑅𝑛

)

1
𝑞
 

Example: Suppose function 𝑓(𝑥) =
1

𝑥
 ℝ\[−1,1] with 𝑞 > 1. Clear that 𝑓 measurable 

function. Because any function that is continuous almost everywhere is a measurable 

function. It is clear that the function is a continuous function on ℝ\[−1,1], consequently 

function 𝑓(𝑥) =
1

𝑥
 ℝ\[−1,1] with 𝑞 > 1 is a measurable function. Furthermore, 

∫ |𝑓(𝑥)|𝑞𝑑𝑥
ℝ𝑛

=  ∫
1

|𝑥|𝑞
𝑑𝑥

ℝ\[−1,1]

 

= 2 ∫
1

𝑥𝑞

∞

1

 𝑑𝑥
 

= 2 [
1

1 − 𝑞
 𝑥1−𝑞]

1

∞

= 2(
1

𝑞 − 1
) < ∞

 

Clear 𝑓 ∈ 𝐿𝑞(ℝ𝑛). But if you pay attention, for 𝑞 = 1, 𝑓 𝐿1(ℝ𝑛), Because 

∫ |𝑓(𝑥)|𝑑𝑥 = 2 ∫
1

𝑥
𝑑𝑥 = 2. ln 𝑥|1

∞∞

1ℝ
=  ∞

. 

As for the local Lebesgue room 𝐿𝑙𝑜𝑐
𝑞 (ℝ𝑛) defined as follows: 

Local Lebesgue Room 𝑳𝒍𝒐𝒄
𝒒

(ℝ𝒏) 

Local Lebesgue Room 𝐿𝑙𝑜𝑐
𝑞 (ℝ𝑛)  with 1 ≤ 𝑞 < ∞  is a space containing all scalable 

functions 𝑓 that fulfills : 

∫ |𝑓(𝑥)|𝑞𝑑𝑥 <  ∞
𝐾

 

for each compact subset 𝐾 ℝ𝑛. If 𝑓 𝐿𝑙𝑜𝑐
𝑞  (ℝ𝑛), so 𝑓 is said to be locally integrated in 

𝐿𝑞(ℝ𝑛). 

Based on definition 1 above, the membership requirements of 𝐿𝑞(ℝ𝑛) still fairly 'rough', 

because it only requires the finiteness of the expression 
∫ |𝑓(𝑥)|𝑑𝑥
ℝ𝑛

. Therefore, it is 
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necessary to add one parameter in the hope that it will refine the membership conditions 

𝐿𝑞(ℝ𝑛). The result of refinement of the Lebesgue space 𝐿𝑞(ℝ𝑛) by adding one parameter, 

it is called a Morrey space 𝐿𝑞,(ℝ𝑛)  (named after its discoverer, Charles B. Morrey, Jr). 

In brief, 𝐿𝑞, (ℝ𝑛) related to the local properties of 𝐿𝑙𝑜𝑐
𝑞 (ℝ𝑛) which is defined on ℝ𝑛, 

whereas 𝐿𝑞(ℝ𝑛) related to global properties. The following is the definition of a Morrey 

space 𝐿𝑞, (ℝ𝑛). 

Morrey Room 𝑳𝒒, (ℝ𝒏) 

For example B(x,r) is an open ball di ℝ𝒏. 𝑛,  𝐿𝑞,(ℝ𝑛) is the set of all functions 𝐿𝑙𝑜𝑐
𝑞  (ℝ𝑛)  

that fulfills : 

‖𝑓‖𝑞, = sup
𝐵=𝐵(𝑥,𝑟)

(
1

𝑟
 ∫ |𝑓(𝑦)|𝑞 𝑑𝑦

𝐵(𝑥,𝑟)

)

1
𝑞

< ∞

 

Where 𝐵(𝑥, 𝑟)ℝ𝒏  is denotes the ball centered at 𝑥  and fingers 𝑟 > 0  (Kreyszig, 

1978:18). 

View shape : 

‖𝑓‖𝑞, = sup
𝐵=𝐵(𝑥,𝑟)

(
1

𝑟
 ∫ |𝑓(𝑦)|𝑞 𝑑𝑦

𝐵(𝑥,𝑟)

)

1
𝑞

.

 

for case = 0 obtained: 

‖𝑓‖𝑞,0 = sup
𝐵=𝐵(𝑥,𝑟)

(
1

𝑟0
 ∫ |𝑓(𝑦)|𝑞 𝑑𝑦

𝐵(𝑥,𝑟)

)

1
𝑞

       

 

  = sup
𝐵=𝐵(𝑥,𝑟)

(
1

1
∫ |𝑓(𝑦)|𝑞 𝑑𝑦
𝐵(𝑥,𝑟)

)

1
𝑞
 

= sup
𝐵=𝐵(𝑥,𝑟)

(∫ |𝑓(𝑦)|𝑞 𝑑𝑦
𝐵(𝑥,𝑟)

)

1
𝑞

.

 

Because 
∫ |𝑓(𝑦)|𝑞 𝑑𝑦 < ∞
𝐵(𝑥,𝑟)

 And 𝐵(𝑥, 𝑟) ℝ𝑛  and the supremum value of the 

integral is the result of the integral itself, ie: 

sup
𝐵=𝐵(𝑥,𝑟)

(∫ |𝑓(𝑦)|𝑞 𝑑𝑦
𝐵(𝑥,𝑟)

)

1
𝑞

= (∫ |𝑓(𝑦)|𝑞 𝑑𝑦
𝑅𝑛

)

1
𝑞

= 𝐿𝑞(ℝ𝑛)

 

As a result for cases  = 0, 𝐿𝑞,(ℝ𝑛) = 𝐿𝑞(ℝ𝑛). This means that the Lebesgue space is a 

special form of the Morrey space in this case  = 0. 
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By paying attention to the definition given above, the following proposition can be 

derived : 

 

 Proposition 1. 

Function f is a member of 𝐿𝑞,(ℝ𝑛)  if and only if there is  𝐶 > 0  such that 

∫ |𝑓(𝑥)|𝑞𝑑𝑥 < 𝐶𝑟𝐵(𝑥,𝑟)
 for each 𝑥 ∈ ℝ𝑛 𝑑𝑎𝑛 𝑟 > 0. 

Proof : 

For any function  𝑓 ∈ 𝐿𝑞,(ℝ𝑛) maka ‖𝑓‖𝑞, < ∞, Where 

‖𝑓‖𝑞, = sup
𝐵=𝐵(𝑥,𝑟)

(
1

𝑟
 ∫ |𝑓(𝑥)|𝑞 𝑑𝑥

𝐵(𝑥,𝑟)

)

1
𝑞
 

= sup
𝐵=𝐵(𝑥,𝑟)

((
1

𝑟
)

1
𝑞
(∫ |𝑓(𝑥)|𝑞 𝑑𝑥

𝐵(𝑥,𝑟)

)

1
𝑞

 )

 

Because 
( 1

𝑟
)

1

𝑞
 is a constant, it can be written as follows : 

= (
1

𝑟
)

1
𝑞

sup
𝐵(𝑥,𝑟)

(∫ |𝑓(𝑥)|𝑞 𝑑𝑥
𝐵(𝑥,𝑟)

)

1
𝑞

 

 

=
1

𝑟

𝑞

  sup
𝐵(𝑥,𝑟)

(∫ |𝑓(𝑥)|𝑞 𝑑𝑥
𝐵(𝑥,𝑟)

)

1
𝑞
 

Because ‖𝑓‖𝑞, < ∞ , then it should 
{( 1

𝑟
 ∫ |𝑓(𝑥)|𝑞 𝑑𝑥

𝐵(𝑥,𝑟)
)

1

𝑞 |𝑥 ∈ ℝ𝑛}
 exists and is 

exists and is limited ∃𝐶 > 0  such that 
( 1

𝑟
 ∫ |𝑓(𝑥)|𝑞 𝑑𝑥

𝐵(𝑥,𝑟)
)

1

𝑞
< 𝐶, ∀𝑥 ∈ ℝ𝑛

 or as 

∫ |𝑓(𝑥)|𝑞 𝑑𝑥
𝐵(𝑥,𝑟) < 𝐶𝑟, ∀𝑥 ∈ ℝ𝑛. So if 𝑓 ∈ 𝐿𝑞,(ℝ𝑛) so  ∃𝐶 > 0 ∋ 

For example 
∫ |𝑓(𝑥)|𝑞 𝑑𝑥
𝐵(𝑥,𝑟) < 𝐶𝑟 , ∀ 𝑥 ∈ ℝ𝑛  and 𝑟 > 0 . Hence, it can be written 

become :                      1

𝑟
 ∫ |𝑓(𝑥)|𝑞 𝑑𝑥

𝐵(𝑥,𝑟) < 𝐶, ∀ 𝑥 ∈ ℝ𝑛. 
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This shows 1

𝑟
 ∫ |𝑓(𝑥)|𝑞 𝑑𝑥

𝐵(𝑥,𝑟)
 limited , ∀ 𝑥 ∈ ℝ𝑛. Because it's limited has a supremum 

value with 

sup
𝐵(𝑥,𝑟)

( 1

𝑟
 ∫ |𝑓(𝑥)|𝑞 𝑑𝑥

𝐵(𝑥,𝑟)
)

1

𝑞
< ∞

. Because it applies ∀𝑥 ∈ ℝ𝑛  so 

sup
𝐵(𝑥,𝑟)

( 1

𝑟
 ∫ |𝑓(𝑥)|𝑞 𝑑𝑥

𝐵(𝑥,𝑟)
)

1

𝑞
 

=
1

𝑟
 ∫ |𝑓(𝑥)|𝑞 𝑑𝑥

𝐵(𝑥,𝑟) < 𝐶 < ∞  . Proved that 𝑓 ∈

𝐿𝑞,(ℝ𝑛). ■ 

Therefore, 𝑓 ∈ 𝐿𝑞,(ℝ𝑛)  if and only if 
∃ 𝐶 > 0 ∋ ∫ |𝑓(𝑥)|𝑞𝑑𝑥 < 𝐶𝑟𝐵(𝑥,𝑟) ∀ 𝑥 ∈

ℝ𝑛 dan 𝑟 > 0. This can be interpreted that the rate of growth 
∫ |𝑓(𝑥)|𝑞𝑑𝑥
𝐵(𝑥,𝑟)

 controlled 

by the expression on the right side ie 𝑟, with  is called the order of 𝑓.  

Besides the Morrey room 𝐿𝑞,(ℝ𝑛) defined above, there are other variants of 𝐿𝑞,(ℝ𝑛) 

yakni ruang Morrey ℳ𝑞
𝑝(ℝ𝑛) which is more often called the classic Morrey space. Dalam 

As of this writing, the more studied Morrey space is the classical Morrey space. The study 

that is interesting to discuss is how the nature of the limited space. 

 

2. Classic Morrey Room 𝓜𝒒
𝒑(ℝ𝒏) 

ℳ𝑞
𝑝(ℝ𝑛) is one variation of 𝐿𝑞,(ℝ𝑛) which has the following definition: 

Definition 1. Classical Morrey Room 𝓜𝒒
𝒑(ℝ𝒏) 

For 1 ≤ 𝑞 ≤ 𝑝 < ∞, Morrey room ℳ𝑞
𝑝(ℝ𝑛) is the set of all functions 𝑓 ∈ 𝐿𝑙𝑜𝑐

𝑞 (ℝ𝑛) that 

fulfills ‖𝑓‖
ℳ𝑞

𝑝 < ∞ where the norm is defined as follows : 

‖𝑓‖
ℳ𝑞

𝑝 = sup
𝑎∈ℝ𝑛 

𝑟>0

|𝐵(𝑎, 𝑟)|
1
𝑝
−

1
𝑞 [∫ |𝑓(𝑥)|𝑞𝑑𝑥

𝐵(𝑎,𝑟)

]

1
𝑞

 

With |𝐵(𝑎, 𝑟)| Specifies the size (Lebesgue) of the ball 𝐵(𝑎, 𝑟). Here is the relationship 

between the classic Morrey spaces ℳ𝑞
𝑝(ℝ𝑛) with Morrey's room 𝐿𝑞,(ℝ𝑛) sebagaimana 

presented in the following proposition : 

Proposition 1. Relations between 𝓜𝒒
𝒑(ℝ𝒏) with 𝑳𝒒,(ℝ𝒏) 

ℳ𝑞
𝑝(

ℝ𝑛) = 𝐿
𝑞,𝑛(1−

𝑞

𝑝
)(ℝ𝑛)

 

Proof: 

Take any function 𝑓  ∈  ℳ𝑞
𝑝(ℝ𝑛)   so 𝑓 ∈ 𝐿𝑙𝑜𝑐

𝑞 (ℝ𝑛)  with ‖𝑓‖
ℳ𝑞

𝑝 < ∞ . Therefore 

∀𝐵(𝑎, 𝑟) ⊆ ℝ𝑛, 
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|𝐵(𝑎, 𝑟)|

(1
𝑝
−

1
𝑞
)

[∫ |𝑓(𝑥)|𝑞𝑑𝑥 
𝐵(𝑎,𝑟)

]

1
𝑞

< ∞

 

|𝐵(𝑎, 𝑟)| stated lebesgue size, it means |𝐵(𝑎, 𝑟)| = 𝐶𝑟𝑛 for a 𝐶 > 0.  

|𝐵(𝑎, 𝑟)|

(1
𝑝
−

1
𝑞
)

[∫ |𝑓(𝑥)|𝑞𝑑𝑥 
𝐵(𝑎,𝑟)

]

1
𝑞

…  (∗)

 

= 

𝑐𝑟𝑛(1

𝑝
−

1

𝑞
)
[∫ |𝑓(𝑥)|𝑞𝑑𝑥 𝐵(𝑎,𝑟)

]

1

𝑞
= 

𝑐
1
𝑝

 𝑐
1
𝑞

𝑟
𝑛
𝑝

𝑟
𝑛
𝑞

[∫ |𝑓(𝑥)|𝑞𝑑𝑥 𝐵(𝑎,𝑟)
]

1

𝑞
 

= 
𝑐

1
𝑝

 𝑐
1
𝑞

𝑟
𝑛

𝑝 [ 1

𝑟𝑛
∫ |𝑓(𝑥)|𝑞𝑑𝑥 𝐵(𝑎,𝑟)

]

1

𝑞
=

𝑐
1
𝑝

 𝑐
1
𝑞

1

(𝑟
−𝑛
𝑝 ) 

[ 1

𝑟𝑛
∫ |𝑓(𝑥)|𝑞𝑑𝑥 𝐵(𝑎,𝑟)

]

1

𝑞
 

 =
𝑐

1
𝑝

 𝑐
1
𝑞

(

 
 1

(𝑟
−

𝑛
𝑝)

𝑞

 )

 
 

1
𝑞

[
1

𝑟𝑛
∫ |𝑓(𝑥)|𝑞𝑑𝑥 
𝐵(𝑎,𝑟)

]

1
𝑞

=
𝑐

1
𝑝

 𝑐
1
𝑞

[
1

𝑟
−

𝑛𝑞
𝑝

1

𝑟𝑛
∫ |𝑓(𝑥)|𝑞𝑑𝑥 
𝐵(𝑎,𝑟)

]

1
𝑞

 

 

=
𝑐

1
𝑝

 𝑐
1
𝑞

[
 
 
 
 

 
1

(𝑟
−

𝑛
𝑝)

𝑞

 

1

𝑟𝑛
∫ |𝑓(𝑥)|𝑞𝑑𝑥 
𝐵(𝑎,𝑟)

]
 
 
 
 

1
𝑞

=
𝑐

1
𝑝

 𝑐
1
𝑞

[
1

𝑟
𝑛(1−

𝑞
𝑝
)
∫ |𝑓(𝑥)|𝑞𝑑𝑥 
𝐵(𝑎,𝑟)

]

1
𝑞

.

 

Based on (∗) then obtained: 

[ 1

𝑟
𝑛(1−

𝑞
𝑝
)
∫ |𝑓(𝑥)|𝑞𝑑𝑥 𝐵(𝑎,𝑟)

]

1

𝑞

< ∞

, for a 𝐵(𝑎, 𝑟) ℝ𝒏. Thus, when take the supremum on 

the left side for each 𝐵(𝑎, 𝑟) ℝ𝒏, obtained : 

‖𝑓‖
𝐿

𝑞,𝑛(1−
𝑞
𝑝
)
= sup

𝐵(𝑥,𝑟)
[

1

𝑟
𝑛(1−

𝑞
𝑝
)
∫ |𝑓(𝑥)|𝑞𝑑𝑥 
𝐵(𝑎,𝑟)

]

1
𝑞

< ∞ 

 

as a result, 
𝑓 ∈ 𝐿

𝑞,𝑛(1−
𝑞

𝑝
)
( ℝ𝒏)

. 
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Instead, take any function 
𝑓 ∈ 𝐿

𝑞,𝑛(1−
𝑞

𝑝
)
( ℝ𝒏)

. Hence for every 𝐵(𝑥, 𝑟) ℝ𝒏, apply : 

‖𝑓‖
𝐿
𝑞,𝑛(1−

𝑞
𝑝
)
= sup

𝐵(𝑥,𝑟)
[

1

𝑟
𝑛(1−

𝑞
𝑝
)
∫ |𝑓(𝑥)|𝑞𝑑𝑥 
𝐵(𝑥,𝑟)

]

1
𝑞

< ∞ 

 

then, for each 𝐵(𝑥, 𝑟) ℝ𝒏, obtained: 

[
1

𝑟
𝑛(1−

𝑞
𝑝
)
∫ |𝑓(𝑥)|𝑞𝑑𝑥 
𝐵(𝑥,𝑟)

]

1
𝑞

< ∞

 

Noted that : 

(𝑟
𝑛(1−

𝑞

𝑝
))

1

𝑞

= 𝑟
𝑛(1

𝑞
−

𝑞

𝑝𝑞
)
= 𝑟

𝑛(1

𝑞
−

1

𝑝
)
, so that 

[
1

𝑟
𝑛(1−

𝑞
𝑝
)
∫ |𝑓(𝑥)|𝑞𝑑𝑥 
𝐵(𝑎,𝑟)

]

1
𝑞

= 𝑟
𝑛(1

𝑝
−

1
𝑞
)
[∫ |𝑓(𝑥)|𝑞𝑑𝑥 

𝐵(𝑎,𝑟)

]

1
𝑞
 

= |𝐵(𝑎, 𝑟)|
1
𝑝
−

1
𝑞 [∫ |𝑓(𝑥)|𝑞𝑑𝑥 

𝐵(𝑎,𝑟)

]

1
𝑞

< ∞.

 

as a result, 
|𝐵(𝑎, 𝑟)|

1

𝑝
−

1

𝑞 [∫ |𝑓(𝑥)|𝑞𝑑𝑥 𝐵(𝑎,𝑟)
]

1

𝑞
< ∞

. This applies to every 𝐵(𝑎, 𝑟) ℝ𝒏, so 

that when taking the supremum on the left side it is obtained : 

‖𝑓‖
ℳ𝑞

𝑝 = sup
𝑎∈ℝ𝑛

𝑟>0

|𝐵(𝑎, 𝑟)|
1
𝑝
−

1
𝑞 [

1

𝑟
𝑛(1−

𝑞
𝑝
)
∫ |𝑓(𝑥)|𝑞𝑑𝑥 
𝐵(𝑎,𝑟)

]

1
𝑞

< ∞

 

as a result, 𝑓 ∈ ℳ𝑞
𝑝( ℝ𝒏). ∎ 

Therefore, 
ℳ𝑞

𝑝( ℝ𝒏) = 𝐿
𝑞,𝑛(1−

𝑞

𝑝
)( ℝ𝒏).

 Based on the above proposition, the following 

results are obtained : 

Consequences 1. Relations between 𝓜𝒒
𝒑(ℝ𝒏) with 𝑳𝒒,(ℝ𝒏) 

𝐿𝑞,(ℝ𝑛) =  ℳ𝑞

𝑛𝑞

𝑛−
(ℝ𝑛) 

To prove the consequence of the above proposition, suppose  = 𝑛 (1 −
𝑞

𝑝
). Based on the 

previous proposition, ℳ𝑞
𝑝( ℝ𝒏) = 𝐿𝑞,( ℝ𝒏). By constructing  = 𝑛 (1 −

𝑞

𝑝
), such that it 
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will be obtained: 𝑝 =
𝑛𝑞

𝑛−
 . Furthermore, by using the same method in the above 

proposition, we will obtain a relation such as Effect 1. on. 

 

 

 

Results and Discussion 

Theorem 1.  

If 𝑓 ∈ 𝐿𝑞(ℝ𝑛) with 1 < 𝑞 ≤ ∞, so 𝑀𝑓 ∈ 𝐿𝑞(ℝ𝑛) And 

‖𝑀𝑓‖𝑞 ≤ 𝐴𝑞‖𝑓‖𝑞
 

with 𝐴𝑞
 is a positive constant that depends only on 𝑞 and 𝑛. 

Evidence: For the case 𝑞 = ∞ trivia with 𝐴∞ = 1, because the essential supremum of a 

function will not be less than the average value of the function. Now assume for case 1 <

𝑞 < ∞. To prove this theorem, it is necessary to define a function as follows:  

𝑓1(𝑥) = {𝑓(𝑥), 𝑗𝑖𝑘𝑎 |𝑓(𝑥)| ≥


2
 

0,                           𝑙𝑎𝑖𝑛𝑛𝑦𝑎
.

 

Since the form of the function is as above, it is obtained 

|𝑓(𝑥)| ≤ |𝑓1(𝑥)| +


2
  dan |𝑀𝑓(𝑥)| ≤ |𝑀𝑓1(𝑥)| +



2

 

as well as 

{𝑥 ∈ ℝ𝑛:𝑀𝑓(𝑥) > } ⊂ {𝑥 ∈ ℝ𝑛:𝑀𝑓(𝑥) >


2
}
 

by using if 𝑓 ∈ 𝐿𝑞(ℝ𝑛), so 𝑓1 ∈ 𝐿1(ℝ𝑛) such that it is obtained 

𝑚(𝐸) = 𝑚{𝑥 ∈ ℝ𝑛:𝑀𝑓(𝑥) > } 

≤ 2
𝐴𝑛


‖𝑓1‖1 = 2

𝐴𝑛


∫ |𝑓(𝑥)|𝑑𝑥.
𝑥∈ℝ𝑛:|𝑓(𝑥)|≥


2

. . (1)
 

Now following the definition of the maximal operator Hardy−Littlewood 𝑀, for example 

𝑔 = 𝑀𝑓  and 𝜇  is the distribution function of 𝑔  as well as using the partial integral 

technique, obtained 

∫ (𝑀𝑓)𝑞𝑑𝑥 = −∫ 
𝑞𝑑

∞

0ℝ𝑛

𝜇() = 𝑞 ∫ 
𝑞−1𝜇()𝑑

∞

0


 

By using the equation (1), so 

‖𝑀𝑓‖𝑞
𝑞 = 𝑞 ∫ 

𝑞−1𝑚(𝐸)𝑑
∞

0

 ≤ 𝑞 ∫ 
𝑞−1

∞

0

(2
𝐴𝑛


∫ |𝑓(𝑥)|𝑑𝑥
𝑥∈ℝ𝑛:|𝑓(𝑥)|≥


2

)𝑑 .
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The fold integral above is solved by changing the order of its integration, namely 

integrating it first against  so that the integral results are obtained which are as follows: 

∫ 
𝑞−2𝑑

2|𝑓(𝑥)|

0

 =
1

𝑞 − 1
|2𝑓(𝑥)|𝑞−1.

 

So, the fold integral above has value 

2
𝐴𝑛𝑞

𝑞 − 1
∫ |𝑓(𝑥)|
𝑥∈ℝ𝑛

|2𝑓(𝑥)|𝑞−1𝑑𝑥 = 4
𝐴𝑛𝑞

𝑞 − 1
∫ |𝑓(𝑥)|𝑞𝑑𝑥 = 𝐴𝑞

𝑞‖𝑓‖𝑞
𝑞

𝑥∈ℝ𝑛

 

so that ‖𝑀𝑓‖𝑞
𝑞 ≤ 𝐴𝑞

𝑞‖𝑓‖𝑞
𝑞  or in other words ‖𝑀𝑓‖𝑞 ≤ 𝐴𝑞‖𝑓‖𝑞,  

with 𝐴𝑞
 is a constant that only depends on 𝑞 And 𝑛. ∎ 

Theorem 1. which we just proved says that the operator is maximal Hardy−Littlewood 

𝑀 confined to the Lebesgue space 𝐿𝑞(ℝ𝑛). With the help of the Theorem 1.  this will 

prove the limitation of the maximum operator Hardy-Littlewood M in a classic Morrey 

space ℳ𝑞
𝑝(ℝ𝑛) which is presented in the following theorem: 

Theorem 2. 

If 𝑓 ∈ ℳ𝑞
𝑝
(ℝ𝑛), with 1 < 𝑞 ≤ 𝑝 < ∞ so 

‖𝑀𝑓‖
ℳ𝑞

𝑝(ℝ𝑛) ≲ ‖𝑓‖
ℳ𝑞

𝑝(ℝ𝑛). 

Proof: 

Take any function 𝑓 ∈ ℳ𝑞
𝑝(ℝ𝑛) and balls 𝐵 = 𝐵(𝑎, 𝑟) ⊂ ℝ𝑛. For example 𝑓 = 𝑓1 + 𝑓2 

with the definition of the function as follows: 

𝑓1(𝑥) = {
𝑓(𝑥), 𝑗𝑖𝑘𝑎 𝑥 ∈ 5𝐵 = 𝐵(𝑎, 5𝑟)

0,                        𝑙𝑎𝑖𝑛𝑛𝑦𝑎

  

dan 
𝑓2(𝑥) = {

𝑓(𝑥), 𝑗𝑖𝑘𝑎 𝑥 ∉ 5𝐵 = 𝐵(𝑎, 5𝑟)
0,                       𝑙𝑎𝑖𝑛𝑛𝑦𝑎

 

Note that 

|𝐵|
1
𝑝
−

1
𝑞 (∫ 𝑀𝑓1(𝑡)

𝑞𝑑𝑡
𝐵=𝐵(𝑎,𝑟)

)

1
𝑞

≤ |𝐵|
1
𝑝
−

1
𝑞 (∫ 𝑀𝑓1(𝑡)

𝑞𝑑𝑡
ℝ𝑛

)

1
𝑞
 

≲ |𝐵|
1
𝑝
−

1
𝑞 (∫ 𝑓1(𝑡)

𝑞𝑑𝑡
5𝐵

)

1
𝑞

 

≲ |5𝐵|
1
𝑝
−

1
𝑞 (∫ 𝑓1(𝑡)

𝑞𝑑𝑡
5𝐵

)

1
𝑞
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≲ ‖𝑓‖
ℳ𝑞

𝑝                      (∗) 

Next notice that if 𝑅  is a cutting ball 𝐵  dan ℝ𝑛\𝐵  hence the diameters (𝑅) ≥ 2 

diameter(𝐵) And 2𝑅 ⊃ 𝐵. Therefore, 

𝑀𝑓2(𝑡) ≲ sup
𝐵⊂ℝ

1

|𝑅|
 ∫ |𝑓(𝑡)|𝑑𝑡.

𝑅

 

 As a result,  

|𝐵|
1
𝑝
−

1
𝑞 (∫ 𝑀𝑓2(𝑡)

𝑞𝑑𝑡
𝐵

)

1
𝑞

≲ |𝐵|
1
𝑝 sup

𝐵⊂ℝ

1

|𝑅|
 ∫ |𝑓(𝑡)|𝑑𝑡

𝑅

 

 such that 

|𝐵|
1
𝑝
−

1
𝑞 (∫ 𝑀𝑓2(𝑡)

𝑞𝑑𝑡
𝐵

)

1
𝑞

≲ sup
ℝ

|𝑅|
1
𝑝
−1

 ∫ |𝑓(𝑡)|𝑑𝑡
𝑅

= ‖𝑓‖
ℳ1 

𝑝 ≤ ‖𝑓‖
ℳ𝑞

𝑝 …(∗∗)

 

 Based on (∗)  And (∗∗)  obtained : 
|𝐵|

1

𝑝
−

1

𝑞 (∫ 𝑀𝑓1(𝑡)
𝑞𝑑𝑡

𝐵=𝐵(𝑎,𝑟)
)

1

𝑞
≲ ‖𝑓‖

ℳ𝑞
𝑝

 

And
 |𝐵|

1

𝑝
−

1

𝑞 (∫ 𝑀𝑓2(𝑡)
𝑞𝑑𝑡

𝐵=𝐵(𝑎,𝑟)
)

1

𝑞
≲ ‖𝑓‖

ℳ𝑞
𝑝 . 

 

as a result, 
|𝐵|

1

𝑝
−

1

𝑞 (∫ 𝑀𝑓(𝑡)𝑞𝑑𝑡
𝐵=𝐵(𝑎,𝑟)

)

1

𝑞
≲ ‖𝑓‖

ℳ𝑞
𝑝

. By taking the supremum on the left-

hand side for all balls 𝐵 = 𝐵(𝑎, 𝑟)ℝ𝑛, obtained ‖𝑀𝑓‖
ℳ𝑞

𝑝 ≲ ‖𝑓‖
ℳ𝑞

𝑝  . ∎ 

Fractional Integral Operator 𝑰𝜶 

One of the operators that can also be seen in the Lebesgue space 𝐿𝑞(ℝ𝑛) is the fractional 

integral operator 𝐼𝛼 which maps functions to other functions on ℝ𝑛. These operators are 

widely used in the field of Fourier Analysis, integral equation, as well as partial 

differential equations. Here is the definition of the fractional integral operator. 

 

Definition 1. Fractional Integral Operator 𝑰𝜶 

For 0 < 𝛼 < 𝑛 And 𝑥 ∈ ℝ𝑛, fractional integral operator 𝑰𝜶
 defined as follows: 

𝑰𝜶𝑓(𝑥) = ∫
𝑓(𝑦)

|𝑥 − 𝑦|𝑛−𝛼
ℝ𝑛

𝑑𝑦
 

Where 𝑓 is a real-valued function on ℝ𝑛. 
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Fractional integral operator 𝐼𝛼 often known as Potential Riesz (by degrees 𝛼). If in case 

𝛼 = 2, operator 𝐼𝛼 often referred to as the Newtonian potential. This operator was first 

studied by Hardy-Littlewood (1927) and by Sobolev (1938). In the book, Hardy-

Littlewood proves that 𝐼𝛼 is the operator that carries the function in 𝐿𝑞(ℝ𝑛) ke 𝐿𝑠(ℝ𝑛). 

This is explained in more detail in the following theorem: 

 

Theorem 3. Hardy-Littlewood-Sobolev inequality 

If 𝛼 =
𝑛

𝑞
−

𝑛

𝑠
, 1 < 𝑞 < 𝑠 < ∞, so ‖𝐼𝛼𝑓‖𝑠 ≲ ‖𝑓‖𝑞. 

Proof: 

Write 

𝐼𝛼𝑓(𝑥) = ∫
𝑓(𝑦)

|𝑥 − 𝑦|𝑛−𝛼
𝑑𝑦 + ∫

𝑓(𝑦)

|𝑥 − 𝑦|𝑛−𝛼
𝑑𝑦

|𝑥−𝑦|≥𝑅|𝑥−𝑦|<𝑅

 

= 𝐼1𝑓(𝑥) + 𝐼2𝑓(𝑥). 

Note that 𝐼1𝑓(𝑥) can be approximated as follows : 

 |𝐼1𝑓(𝑥)| ≤ ∫
𝑓(𝑦)

|𝑥−𝑦|𝑛−𝛼
𝑑𝑦

|𝑥−𝑦|<𝑅

 

≤ ∑ ∫
𝑓(𝑦)

|𝑥 − 𝑦|𝑛−𝛼
𝑑𝑦

𝐵(𝑥,2𝑘+1𝑅)\𝐵(𝑥,2𝑘𝑅)

1

𝑘=−∞

 

By using that fact |𝑥 − 𝑦| ≥ 2𝑘𝑅, then obtained: 

≤ ∑
1

(2𝑘𝑅)𝑛−𝛼
∫ |𝑓(𝑦)|𝑑𝑦
𝐵(𝑥,2𝑘+1𝑅)\𝐵(𝑥,2𝑘𝑅)

1

𝑘=−∞

 

≤ ∑
1

(2𝑘𝑅)𝑛−𝛼
∫ |𝑓(𝑦)|𝑑𝑦
𝐵(𝑥,2𝑘+1𝑅)

1

𝑘=−∞

 

≲ ∑
1

(2𝑘𝑅)𝑛−𝛼
((2𝑘+1𝑅)𝑛𝑀𝑓(𝑥))

1

𝑘=−∞

 

≲ 2𝑛 ∑ (2𝛼)𝑘𝑅𝛼𝑀𝑓(𝑥)

1

𝑘=−∞

≲ 𝑅𝛼𝑀𝑓(𝑥).

 

So obtained :  |𝐼1𝑓(𝑥)| ≲ 𝑅𝛼𝑀𝑓(𝑥).                                  (∗) 

In approximating 𝐼2(𝑥) inequality is used Hölder. Note that :   

|𝐼2𝑓(𝑥)| ≤ ∫
𝑓(𝑦)

|𝑥 − 𝑦|𝑛−𝛼
𝑑𝑦

|𝑥−𝑦|≥𝑅
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≤ ∑ ∫
𝑓(𝑦)

|𝑥 − 𝑦|𝑛−𝛼
𝑑𝑦

𝐵(𝑥,2𝑘+1𝑅)\𝐵(𝑥,2𝑘𝑅)

∞

𝑘=0

 

≤ ∑
1

(2𝑘𝑅)𝑛−𝛼
∫ |𝑓(𝑦)|𝑑𝑦
𝐵(𝑥,2𝑘+1𝑅)\𝐵(𝑥,2𝑘𝑅)

∞

𝑘=0

 

≤ ∑
1

(2𝑘𝑅)𝑛−𝛼
∫ |𝑓(𝑦)|𝑑𝑦
𝐵(𝑥,2𝑘+1𝑅)

∞

𝑘=0

 

≲ ∑
1

(2𝑘𝑅)𝑛−𝛼
[∫ |𝑓(𝑦)|𝑞𝑑𝑦

𝐵(𝑥,2𝑘+1𝑅)

]

1
𝑞

[∫ 𝑑𝑦
𝐵(𝑥,2𝑘+1𝑅)

]

1−
1
𝑞

∞

𝑘=0

 

≲ ∑
(2𝑘+1𝑅)

𝑛(1−
1
𝑞
)

(2𝑘𝑅)𝑛−𝛼

1

𝑘=−∞

[∫ |𝑓(𝑦)|𝑞𝑑𝑦
𝐵(𝑥,2𝑘+1𝑅)

]

1
𝑞

≲ 𝑅−
𝑛
𝑠‖𝑓‖𝑞.

 

The result is obtained :    |𝐼2𝑓(𝑥)| ≲ 𝑅−
𝑛

𝑠‖𝑓‖𝑞.
                                     (∗∗) 

Based on (∗) And (∗∗) obtained : 

|𝐼𝛼𝑓(𝑥)| ≤ |𝐼1𝑓(𝑥)| + |𝐼2𝑓(𝑥)| 

≤ 𝐶 (𝑅𝛼𝑀𝑓(𝑥) + 𝑅−
𝑛

𝑠‖𝑓‖𝑞).
                      (∗∗∗) 

For 𝑅 > 0, selectable 𝑅 such that 

𝑀𝑓(𝑥)

‖𝑓‖𝑞

= 𝑅−
𝑛
𝑠
−𝛼 = 𝑅

−
𝑛
𝑞 .                             (1)

 

So that if R is selected as in (1), then equation (∗∗∗) become  

|𝐼𝛼𝑓(𝑥)| ≲ (𝑀𝑓(𝑥))
𝑞
𝑠‖𝑓‖𝑞

1−
𝑞
𝑠 .

 

as a result 

‖𝐼𝛼𝑓(𝑥)‖𝑠
𝑠 = ∫ |𝐼𝛼𝑓(𝑦)|𝑠𝑑𝑦

ℝ𝑛

 

≲ ∫ (𝑀𝑓(𝑦))
𝑞
‖𝑓‖𝑞

𝑠−𝑞𝑑𝑦
ℝ𝑛

 

≲ ‖𝑓‖𝑞
𝑠−𝑞 ∫ (𝑀𝑓(𝑦))

𝑞
𝑑𝑦

ℝ𝑛
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By making use of the theorem on 3.5.3 that is ‖𝑀𝑓(𝑥)‖𝑞 ≲ ‖𝑓‖𝑞
, then obtained : 

≲ ‖𝑓‖𝑞
𝑠−𝑞‖𝑓‖𝑞

𝑞 ≲ ‖𝑓‖𝑞.
𝑠  

Therefore, it is proved that ‖𝐼𝛼𝑓(𝑥)‖𝑠 ≲ ‖𝑓‖𝑞. ∎ 

 

Theorem 3. has proved that it turns out that the integral operator is fractional 𝐼𝛼 confined 

to the Lebesgue space, it will now be shown that the operator 𝐼𝛼 also limited to classic 

Morrey room. Operators limitations 𝐼𝛼 in Morrey's room it was first studied by Adam 

(1975) and Chiarenza, F. − M. Frasca (1987). Evidence of carrier limitations 𝐼𝛼 in the 

classical Morrey space is not much different from the proof in space Lebesgue. In addition 

to exploiting the limited nature of the operator 𝐼𝛼 in the Lebesgue room, also the limiting 

nature of the maximal operator Hardy−Littlewood 𝑀 in the classical Morrey space is 

used in the proof. 

Theorem 4. 

For example given 1 < 𝑞 ≤ 𝑝 <
𝑛

𝛼
 and 0 < 𝛼 < 𝑛. If for 1 < 𝑡 ≤ 𝑠 < ∞ apply 

1

𝑠
=

1

𝑝
−

𝛼

𝑛
 𝐴𝑛𝑑

𝑞

𝑝
=

𝑡

𝑠

 

so 

‖𝐼𝛼𝑓(𝑥)‖ℳ𝑡
𝑠 ≲ ‖𝑓‖

ℳ𝑞
𝑝 . 

Proof: 

Write back  

𝐼𝛼𝑓(𝑥) = ∫
𝑓(𝑦)

|𝑥 − 𝑦|𝑛−𝛼
𝑑𝑦 + ∫

𝑓(𝑦)

|𝑥 − 𝑦|𝑛−𝛼
𝑑𝑦

|𝑥−𝑦|≥𝑅|𝑥−𝑦|<𝑅

 

= 𝐼1𝑓(𝑥) + 𝐼2𝑓(𝑥). 

Note that 𝐼1𝑓(𝑥) can be approximated as follows: 

 |𝐼1𝑓(𝑥)| ≤ ∫
𝑓(𝑦)

|𝑥−𝑦|𝑛−𝛼
𝑑𝑦

|𝑥−𝑦|<𝑅

 

≤ ∑ ∫
𝑓(𝑦)

|𝑥 − 𝑦|𝑛−𝛼
𝑑𝑦

𝐵(𝑥,2𝑘+1𝑅)\𝐵(𝑥,2𝑘𝑅)

1

𝑘=−∞

 

By using that fact |𝑥 − 𝑦| ≥ 2𝑘𝑅, then obtained: 
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≤ ∑
1

(2𝑘𝑅)𝑛−𝛼
∫ |𝑓(𝑦)|𝑑𝑦
𝐵(𝑥,2𝑘+1𝑅)\𝐵(𝑥,2𝑘𝑅)

1

𝑘=−∞

 

≤ ∑
1

(2𝑘𝑅)𝑛−𝛼
∫ |𝑓(𝑦)|𝑑𝑦
𝐵(𝑥,2𝑘+1𝑅)

1

𝑘=−∞

 

≲ ∑
1

(2𝑘𝑅)𝑛−𝛼
((2𝑘+1𝑅)𝑛𝑀𝑓(𝑥))

1

𝑘=−∞

 

≲ 2𝑛 ∑ (2𝛼)𝑘𝑅𝛼𝑀𝑓(𝑥)

1

𝑘=−∞

 

≲ 𝑅𝛼𝑀𝑓(𝑥). 

So obtained :  |𝐼1𝑓(𝑥)| ≲ 𝑅𝛼𝑀𝑓(𝑥).                                  (∗) 

In approximating 𝐼2(𝑥)  reuse inequality H ö lder. Note that :  |𝐼2𝑓(𝑥)| ≤

∫
𝑓(𝑦)

|𝑥−𝑦|𝑛−𝛼
𝑑𝑦

|𝑥−𝑦|≥𝑅

 

 

≤ ∑ ∫
𝑓(𝑦)

|𝑥 − 𝑦|𝑛−𝛼
𝑑𝑦

𝐵(𝑥,2𝑘+1𝑅)\𝐵(𝑥,2𝑘𝑅)

∞

𝑘=0

 

≤ ∑
1

(2𝑘𝑅)𝑛−𝛼
∫ |𝑓(𝑦)|𝑑𝑦
𝐵(𝑥,2𝑘+1𝑅)\𝐵(𝑥,2𝑘𝑅)

∞

𝑘=0

 

≤ ∑
1

(2𝑘𝑅)𝑛−𝛼
∫ |𝑓(𝑦)|𝑑𝑦
𝐵(𝑥,2𝑘+1𝑅)

∞

𝑘=0

 

≲ ∑
1

(2𝑘𝑅)𝑛−𝛼
[∫ |𝑓(𝑦)|𝑞𝑑𝑦

𝐵(𝑥,2𝑘+1𝑅)

]

1
𝑞

[∫ 𝑑𝑦
𝐵(𝑥,2𝑘+1𝑅)

]

1−
1
𝑞

∞

𝑘=0

 

≲ ∑
(2𝑘+1𝑅)

𝑛(1−
1
𝑞
)

(2𝑘𝑅)𝑛−𝛼

∞

𝑘=0

[∫ |𝑓(𝑦)|𝑞𝑑𝑦
𝐵(𝑥,2𝑘+1𝑅)

]

1
𝑞
 

Because  

|𝐵(𝑥, 2𝑘+1𝑅)|
1
𝑝
−

1
𝑞 [∫ |𝑓(𝑦)|𝑞𝑑𝑦

𝐵(𝑥,2𝑘+1𝑅)

]

1
𝑞

≤ ‖𝑓‖
ℳ𝑞

𝑝 ,

 

 then obtained  
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[∫ |𝑓(𝑦)|𝑞𝑑𝑦
𝐵(𝑥,2𝑘+1𝑅)

]

1
𝑞

≤
‖𝑓‖

ℳ𝑞
𝑝

|𝐵(𝑥, 2𝑘+1𝑅)|
1
𝑝
−

1
𝑞

≤
‖𝑓‖

ℳ𝑞
𝑝

(2𝑘+1𝑅)
𝑛(1

𝑝
−

1
𝑞
)

 

 As a result,  

|𝐼2𝑓(𝑥)| ≲ ∑
(2𝑘+1𝑅)

𝑛(1−
1
𝑞
)

(2𝑘𝑅)𝑛−𝛼

∞

𝑘=0

[∫ |𝑓(𝑦)|𝑞𝑑𝑦
𝐵(𝑥,2𝑘+1𝑅)

]

1
𝑞
 

≲ ∑
(2𝑘+1𝑅)

𝑛(1−
1
𝑞
)

(2𝑘𝑅)𝑛−𝛼

∞

𝑘=0

‖𝑓‖
ℳ𝑞

𝑝

(2𝑘+1𝑅)
𝑛(1

𝑝
−

1
𝑞
)
≲ 𝑅−

𝑛
𝑠‖𝑓‖

ℳ𝑞
𝑝 .

 

The result is obtained :    |𝐼2𝑓(𝑥)| ≲≲ 𝑅−
𝑛

𝑠‖𝑓‖
ℳ𝑞

𝑝 .
                                     (∗∗) 

Based on (∗) And (∗∗) obtained : 

|𝐼𝛼𝑓(𝑥)| ≤ |𝐼1𝑓(𝑥)| + |𝐼2𝑓(𝑥)| 

≤ 𝐶 (𝑅𝛼𝑀𝑓(𝑥) + 𝑅−
𝑛

𝑠‖𝑓‖𝑞).
                      (∗∗∗) 

 For R>0, we can choose R such that 

𝑅𝛼𝑀𝑓(𝑥) = 𝑅−
𝑛
𝑠‖𝑓‖

ℳ𝑞
𝑝  

 

or 

𝑅 = (
𝑀𝑓(𝑥)

‖𝑓‖
ℳ𝑞

𝑝

)

𝑝
𝑛

                                                             (1)

 

So that if R is selected as in (1), then equation (∗∗∗) become  

|𝐼𝛼𝑓(𝑥)| ≲ |𝑀𝑓(𝑥)|
𝑝
𝑠‖𝑓‖

ℳ𝑞
𝑝

1−
𝑝
𝑠 = |𝑀𝑓(𝑥)|

𝑞
𝑡‖𝑓‖

ℳ𝑞
𝑝

1−
𝑝
𝑠
 

On the other hand,  

|𝐵(𝑥, 𝑟)|
1
𝑝
−

1
𝑞 [∫ |𝑀𝑓(𝑥)|𝑞𝑑𝑥

𝐵(𝑥,𝑟)

]

1
𝑞

≤ ‖𝑀𝑓‖
ℳ𝑞

𝑝 ,

 

so that 

[∫ |𝑀𝑓(𝑥)|𝑞𝑑𝑥
𝐵(𝑥,𝑟)

]

1
𝑞

≤
‖𝑀𝑓‖

ℳ𝑞
𝑝

|𝐵(𝑥, 𝑟)|
1
𝑝
−

1
𝑞
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or it can be written as follows : 

[∫ |𝑀𝑓(𝑥)|𝑞𝑑𝑥
𝐵(𝑥,𝑟)

]

1
𝑡

≤
‖𝑀𝑓‖

𝑞
𝑡
ℳ𝑞

𝑝

|𝐵(𝑥, 𝑟)|
1
𝑡
(𝑞
𝑝
−1)

=
‖𝑀𝑓‖

𝑞
𝑡
ℳ𝑞

𝑝

|𝐵(𝑥, 𝑟)|
1
𝑡
(𝑡
𝑠
−1)

=
‖𝑀𝑓‖

𝑞
𝑡
ℳ𝑞

𝑝

|𝐵(𝑥, 𝑟)|
1
𝑠
−

1
𝑡

.

 

 

Hence, obtained 

‖𝐼𝛼𝑓(𝑥)‖ℳ𝑡
𝑠 = sup

𝑥∈ℝ𝑛

𝑟>0

|𝐵(𝑥, 𝑟)|
1
𝑠
−

1
𝑡 [∫ |𝐼𝛼𝑓(𝑥)|𝑡𝑑𝑥

𝐵(𝑥,𝑟)

]

1
𝑡
 

≲ sup
𝑥∈ℝ𝑛

𝑟>0

|𝐵(𝑥, 𝑟)|
1
𝑠
−

1
𝑡 [∫ |𝑀𝑓(𝑥)|𝑞‖𝑓‖

ℳ𝑞
𝑝

𝑡(1−
𝑝
𝑠
)
𝑑𝑥

𝐵(𝑥,𝑟)

]

1
𝑡
 

≲ sup
𝑥∈ℝ𝑛

𝑟>0

|𝐵(𝑥, 𝑟)|
1
𝑠
−

1
𝑡 ‖𝑓‖

ℳ𝑞
𝑝

(1−
𝑝
𝑠
)
[∫ |𝑀𝑓(𝑥)|𝑞𝑑𝑥

𝐵(𝑥,𝑟)

]

1
𝑡
 

≲ sup
𝑥∈ℝ𝑛

𝑟>0

|𝐵(𝑥, 𝑟)|
1
𝑠
−

1
𝑡‖𝑓‖

ℳ𝑞
𝑝

(1−
𝑝
𝑠
)

‖𝑀𝑓‖
𝑞
𝑡
ℳ𝑞

𝑝

|𝐵(𝑥, 𝑟)|
1
𝑠
−

1
𝑡

 

≲ sup
𝑥∈ℝ𝑛

𝑟>0

‖𝑓‖
ℳ𝑞

𝑝

(1−
𝑝
𝑠
)

‖𝑀𝑓‖
𝑞
𝑡
ℳ𝑞

𝑝

|𝐵(𝑥, 𝑟)|
1
𝑠
−

1
𝑡

 

≲‖𝑓‖
ℳ𝑞

𝑝

(1−
𝑝
𝑠
)
‖𝑀𝑓‖

𝑝
𝑠
ℳ𝑞

𝑝

 

By using the limited property of the maximum operator Hardy-Littlewood M in the classic 

Morrey space it has been proven that is ‖𝑀𝑓‖
ℳ𝑞

𝑝(ℝ𝑛) ≲ ‖𝑓‖
ℳ𝑞

𝑝(ℝ𝑛)
, then obtained: 

≲‖𝑓‖
ℳ𝑞

𝑝

(1−
𝑝
𝑠
)
‖𝑀𝑓‖

𝑝
𝑠
ℳ𝑞

𝑝 ≲‖𝑓‖
ℳ𝑞

𝑝

(1−
𝑝
𝑠
)
‖𝑓‖

𝑝
𝑠
ℳ𝑞

𝑝 = ‖𝑓‖
ℳ𝑞

𝑝 .
 

as a result, 

‖𝐼𝛼𝑓(𝑥)‖ℳ𝑡
𝑠 ≲ ‖𝑓‖

ℳ𝑞
𝑝 .    ∎ 
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Look at the final result of the Theorem 4. such, if 𝑝 = 𝑞 so 𝑠 = 𝑡, means theorem 4. 

above is the Hardy-Littlewood-Sobolev Inequality. Thus, it has been shown that the 

integral operator is fractional 𝐼𝛼 has limited properties in the Lebesgue space 𝐿𝑞(ℝ𝑛) 

and in the classic Morrey room ℳ𝑞
𝑝(ℝ𝑛). 

 

Conclusion 

Based on the discussion in the previous chapter, the following conclusions are 

obtained: 1) Morrey Room 𝐿𝑞,(ℝ𝑛) is an expansion (refinement) of the Lebesgue space 

𝐿𝑞(ℝ𝑛), especially for cases  = 0, 𝐿𝑞,(ℝ𝑛) = 𝐿𝑞(ℝ𝑛). Classic Morrey Roomℳ𝑞
𝑝(ℝ𝑛) 

is a normed space and a Banach space. 2) The fractional integral operator I_\alpha has a 

similar limitation to the Lebesgue space 𝐿𝑞(ℝ𝑛) and the classic Morrey roomℳ𝑞
𝑝(ℝ𝑛). 
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