

How to cite: Wicaksono, D., & Soewito, B. (2024). Application of The Multi-Threading Method and Python Script
for The Network AutomatioN. Syntax Literate. (9)6. http://dx.doi.org/10.36418/syntax-literate.v9i6

E-ISSN: 2548-1398

Syntax Literate: Jurnal Ilmiah Indonesia p–ISSN: 2541-0849
e-ISSN: 2548-1398
Vol. 9, No. 6, Juni 2024

APPLICATION OF THE MULTI-THREADING METHOD AND PYTHON SCRIPT
FOR THE NETWORK AUTOMATION

Deny Wicaksono1, Benfano Soewito2
Computer Science Department, BINUS Graduate Program, Master of Computer Science, Bina
Nusantara University, Jakarta, Indonesia 114801,2
Email: deny.wicaksono@gmail.com1, bsoewito@binus.edu2

Abstract

In recent times, there has been a noticeable surge in the inclination towards the
implementation of network automation solutions. This trend is driven by the objective of
optimizing network availability within the context of hybrid data center networks, which are
becoming increasingly prevalent. Reliability, performance, scalability, and minimal resource
overhead are crucial solution design characteristics that significantly impact the decision-
making process regarding adoption. Recent research has shown that 90% of network outages
happen because of human factors and 69% of respondents manage their network with manual
method. That high human error of up to 90%, occurs when configuring network devices using
manual method. These problems had a negative impact on the functioning of the organization
and were harmful to the user. In this research, we investigate solutions to reduce network
outage that caused human error using network automation using the Python programming
language and multi-threading method. This network automation will reduce configuration
time, eliminate human error, and significantly increase efficiency. The aim of this research is
to investigate the efficacy of network automation using Python and multi-threading to reduce
network outages.The method used in this research is a parallel or multi-tread execution
process method using GNS3 as network simulator. Based on experimental results, the multi-
thread automation approach is significantly faster than both the serial automation method (67
seconds) and the manual method (248 seconds), this method requiring only 41 seconds to
configure all Cisco router devices. If you're looking for speed, look no farther than the multi-
thread automation approach, which is 6 times quicker than the manual method and 3.7 times
quicker than the serial automation approach. The findings of this study have substantial and
immediate implications for the ability of network engineers to speed up the configuration of
networks and lower the rate of human error in doing so.

Keywords: Network Automation; Multi-Threading; Network Programming; Network Efficiency;
Software Defined Network

Introduction

In 2016, an extensive network outage occurred, affecting millions of customers in
important cities throughout Australia, including Sydney, Brisbane, Melbourne, Adelaide, and
Perth. Telstra, the largest telecommunications provider in Australia, was the company that
experienced the outage. Specifically, a typographical error in a network setup instruction was the
cause of the disruption, which was caused by a technical issue. As a consequence of the
typographical error, a routing loop was created, which created congestion on the network and
finally resulted in the network being down. At around ten o'clock in the morning, Australian
Eastern Standard Time, the power outage began and continued for a number of hours (Smolaks,
2016).

The research conducted by Dimensional Research, titled "Network Complexity, Change,
and Human Factors Are Failing the Business," encompassed a sample size of 315 network
specialists. The results showed that 97% of participants acknowledged that human factors are
responsible for network disruptions, while 74% of respondents indicated that network changes

Application of The Multi-Threading Method and Python Script for The Network Automation

Syntax Literate, Vol. 9, No. 6, Juni 2024 3615

can impact their business operations multiple times per year or more. Manual operational methods
exacerbate issues as they give rise to complications. The research indicates a positive correlation
between network complexity and the occurrence of network disruptions. This sentiment has been
conveyed by 59% of the participants in the poll. Furthermore, 69% employ manual operational
methods, such as verifying device setups through the command line interface (CLI) and manually
conducting traceroute activities. In general, network administration may have inefficiencies as a
result of the frequent need for manual checks and monitoring (Veriflow, 2016).

Following the completion of a case study at an e-commerce company, the author made the
discovery that the organization suffered four instances of service interruptions between the years
2019 and 2023. These outages were caused by human error in the process of setting up network
equipment. During the course of the examination, it was discovered that the firm had four
instances of service interruptions that were caused by human error in the configuration of network
equipment. When these disruptions occurred, they had a negative impact on the operations of the
firm and caused clients to experience financial struggles. Devices such as distribution switches
and firewalls, which are necessary for connecting business service server devices to the global
internet network, are among the equipment that are responsible for interference. The approach
that is currently used for network configuration is a manual method, which requires users to
manually input commands or copy and paste commands from a text editor.

One potential solution that may be given is the utilization of a network automation system
in order to reduce the possibility of network outages that are caused by human activities inside
the corporate network. The findings of this study suggest the development of a network
automation system that takes the Python programming language as its foundation and makes use
of the Netmiko library to establish a remote connection to the device. The utilization of multi-
threading or parallel process is suggested as a means of enhancing the speed of the device and
providing a way for the execution of commands. When it comes to the software that simulates
networks, it makes use of GNS3, which is both open source and free.

There are a variety of approaches that may be followed when it comes to automating
networks and systems, and among these many alternatives, Python programming techniques are
becoming an increasingly frequent practice. According to the results of a research that was
conducted to create and test a network automation tool, it is feasible to develop a tool that is based
on Python (Larsson, 2020). In the event that there are several suppliers involved, this is the
situation that arises. There are plans in place to combine virtual network operations and automate
services in order to provide end-to-end quantum encryption (Aguado et al., 2018). These plans
pertain to the provision of quantum encryption. Over the course of the past several years, there
have been significant shifts in both the automation of systems and the distribution of network
services. There are a substantial number of components of the infrastructure, including security,
that need to be automated in order to facilitate their capacity to rapidly adapt to changing
circumstances (Arifin et al., 2019).

This research takes use of automation and the Python programming language in order to
offer unique approaches to the setup of network devices. The objectives of this research are
mentioned above. The amount of time that is spent preparing and maintaining the equipment is
significantly cut down as a result of this (Web Pages and Mobile Apps, 2019). Python
programming is employed for the goal of automating and abstracting network operations. The
standard techniques of configuring network equipment are no longer a feasible alternative since
they require a lot of manual labour and are prone to making mistakes. The expense of employing
additional staff to finish the task is prohibitively high for major firms, which is another reason
why the work cannot be completed. It is anticipated that the current trend of quickly growing the
number of devices that are linked to a network will continue in the foreseeable future.
Consequently, as a result of this, a rising number of firms are turning to automation since it helps
them to achieve the right levels of speed, agility, consistency, and efficiency (Mihăilă et al., 2017).
This is an immediate result of the circumstances that have arisen.

Deny Wicaksono, Benfano Soewito

3616 Syntax Literate, Vol. 9, No. 6, Juni 2024

The implementation of network automation through the usage of Python scripts makes it
feasible to configure network devices, most notably Cisco routers. This is made possible by the
development of network automation. When compared to the use of human procedures, the results
reveal that the amount of time required for configuration may be reduced by as much as 99%
when automation is utilized. This is a significant reduction. Furthermore, automation reduces the
risk of human mistake, which results in setup that is both speedier and more precise. This is a
significant advantage (Bouhouras et al., 2010).

Because of the availability of several libraries, such as Paramiko and Netmiko, Python is
utilized in the field of network technology. This is because these libraries make it easy to automate
network setups. To execute certain programmes, it is necessary to include Python libraries in the
programme script and this is a mandatory need (Mazin et al., 2021). A programme written in
Python known as the Paramiko module is capable of performing the functions of both a client and
a server, which enables the establishment of a secure shell connection. Paramiko is able to assist
the setting of some pieces of network equipment, such as routers and Cisco switches, by utilizing
a Secure Shell (SSH) connection. Both of these devices are examples of network equipment. It is
essential for Paramiko to possess the Internet Protocol (IP) address, the Username, and the
Password in order for her to be able to get access to the network device. If all three credentials
are genuine, the Paramiko is able to obtain access to a network device by utilizing the SSH Client
(Nugroho & Pujiarto, 2022). This is done in order to acquire access to the device.

In Python, the Netmiko library is a library that enables SSH connections on many vendors
of network devices, sometimes known as multivendor support. In addition to being a Python
library, the Paramiko library serves as its foundation. On the other hand, Netmiko is not able to
independently determine which device from a certain vendor is being used without the assistance
of the seller. Because it has a function called Connect Handler, Netmiko is more user-friendly
than Paramiko when it comes to connecting to devices that are connected to a network. Using this
capability, the process of establishing connections between Netmiko and assorted devices that are
linked to a network is simplified. It is required for Netmiko to possess information in order for it
to be able to access a network device. This information includes an Internet Protocol (IP) address,
the category of the device, a username, and a password associated with the device. Netmiko is
unable to automatically detect the kind of network device; an example of a network device type
is cisco_ios, which is a router network device that is made by Cisco vendors (Mauboy & Wellem,
2022). Netmiko lacks the capability to automatically determine the type of network device.

Multiple protocols exist for remote access to a router, including Telnet and Secure Socket
Shell (SSH) (Waheed & Ali, 2018). Telnet is an unencrypted protocol that is focused on
transmitting text and does not include any authentication mechanisms (Maurice et al., 2017). A
secure remote login to a computer or server can be achieved through the use of a network protocol
known as the Secure Shell (SSH) protocol (Ylonen et al., 2015). It functions on the standard User
Control Protocol (TCP) port 22, which is referred to as port 22. The usage of popular
cryptographic algorithms, which Port 22 is able to function in a secure manner, may be used to
achieve the task of authenticating users and assuring the safety of communication sessions. Within
the context of this specific scenario, the standard encryption process involves encrypting data
before to its transmission and then decrypting the data once it has arrived at its intended location
(Ayasso & Mohammad-Djafari, 2010). The aim of this research is to investigate the efficacy of
network automation using Python and multi-threading to reduce network outages caused by
human error, decrease configuration time, and enhance efficiency in hybrid data center networks.

Application of The Multi-Threading Method and Python Script for The Network Automation

Syntax Literate, Vol. 9, No. 6, Juni 2024 3617

Research Methods

Fig. 1, This diagram depicts the network topology of the automation server, which is
necessary in order to achieve the goals of the study. It is of the utmost importance that the topology
must not solely rely on conventional techniques of network design but rather should also make it
possible to automate the network. It is necessary to configure and validate the topology of the
network before carrying out network testing that is appropriate.

Figure 1. Server automation topology

The IP address scheme that will be used as the device management IP address that will be

accessible by the network automation server is the private IP address 192.168.1.0/24. This is
shown in the topology picture. A switch management device will be used to establish a connection
between the network device and the network automation server, which is located on the right and
has an IP address of 192.168.1.100. On the right, the switch management device will establish a
connection between the network automation server and eleven routers from the Cisco 7200 series.
These routers will have IP addresses ranging from 192.168.1.1 to 192.168.1.11. Vlan 10 will be
used as a specific vlan for the purpose of managing devices that are connected to this connection.
The network automation server will be able to establish a connection with the router device if this
topology is utilized, as the router device is located inside the same IP address subnet. By utilizing
the Python programming language in conjunction with the Netmiko library, the network
automation server operates on the Linux Ubuntu operating system version 22.04. Through the use
of the Secure Shell (SSH) protocol and the Command Line Interface (CLI) approach, the router
devices will be able to be automatically configured from the network automation server. This will
be accomplished through the use of remote access to the device. Developing a system for network
automation through the use of the Python programming language is one way to accomplish this
goal.

As part of this research, a number of different tools and pieces of software are utilized in
order to successfully operate a network automation system. In addition, there is the software
known as VMware Workstation, which serves as a supporter for virtualization; GNS3, which
functions as a network simulator; Linux Ubuntu, which serves as the operating system of the
network automation server; Jupyter notebook, which functions as an application for generating
Python code and the Iperf3 application, which functions as a traffic generator in throughput mode
(Taruk et al., 2018).

Deny Wicaksono, Benfano Soewito

3618 Syntax Literate, Vol. 9, No. 6, Juni 2024

VMware Workstation
A virtual machine (VM) is a separate, self-contained computing environment where several

operating systems can run concurrently on a physical computer by means of a software application
known as a hypervisor. With virtual machines (VMs), users can run multiple operating systems
and apps at once without interfering with one another. Virtual machines (VMs) function by
assigning physical resources, such CPU, memory, and storage, to individual computers and
maintaining total isolation between them. Virtualization software such as VMware Workstation
Pro Virtual Machine enables users to run virtual operating systems on real computers. Any
operating system, including Windows, Linux, and macOS, may be run concurrently on a single
computer. Software for Virtual Machines in this study, VMware Workstation Pro version 17 is
utilized to run the Linux operating system and GNS3 software in order to simulate the operation
of the network automation system.

Simulation Topology

Fig. 2, demonstrates simulated network is divided into IDC1 on the left and IDC2 on the
right data center locations. With simulations connected to external networks and the internet, the
IP address scheme used is a public IP address. IDC1 utilizes the IP address block 124.158.1.0/24,
while IDC2 uses the IP address block 124.158.2.0/24. Each IDC simulation involves the
connection of four routers to four server machines. Within each IDC, there is a router device that
serves as a distribution router. The distribution router is a bridge between the network in the IDC
and the core gateway router device, where the core gateway router will be connected to the
internet. Each IDC 1 and IDC 2 is comprised of five Cisco routers running dynamic OSPF routing
with area 0. Using dynamic external BGP routing towards the IDC router and the internet, one of
the routers serves as a gateway to the external network and the internet. Internet-connected routers
that are tethered to a server on the internet. OSPF routing protocol, used to routing exchange
between routers inside the IDC. Servers side used static routing and pointing the router IP address
as the default gateway. The expected results after configuring this topology are from each server
on IDC1 and IDC2, can ping the server on the internet.

Figure 2. Logical simulation topology

Additionally, the pre-configuration is done in order to enable remote access to the router

device from the network automation server by means of the SSH protocol. The setup that is

Application of The Multi-Threading Method and Python Script for The Network Automation

Syntax Literate, Vol. 9, No. 6, Juni 2024 3619

required includes the setting of the username and password, the hostname, the management of IP
addresses, the activation of the SSH protocol, and the activation of line vty.

GNS3 Network Simulator

Emulated GNS3 connects virtual devices to real and other virtual devices by providing
them with the necessary tools to connect. Features of GNS3 have the potential to considerably
facilitate areas such as utilization, reusability, manageability, interconnection, and dissemination.
As a result, GNS3 will cut down on unnecessary expenses and delays. Using templates and
libraries, users are able to design and configure network nodes with the help of GNS3, which is a
clientless network emulator that has a user interface that is based on a browser. After downloading
the software from the GNS3 website, the GNS3 network simulator may then be installed on your
computer. A representation of the GNS3 network simulation may be seen in Fig 3.

Figure 3. Simulation topology with GNS3

Prerequisites are the conditions that must be met in order to participate in concerned with

this research. This system requires a central processing unit (CPU) that is manufactured by Intel
and is compatible with the Intel® brand. The virtualization software that is required is VMware
Workstation 15 or a later version, and the operating system that should be used is either Windows
10 or Windows 11. The hardware and software requirements for a laptop or PC are presented in
the following Table 1.

Table 1. Hardware & Software Requirements

Items Requirements
CPU Intel i5 / i7 (4 Logical processors)
RAM Min. 16 Gb
HDD Space Min. 40 Gb
Network LAN / WLAN
Operating System Windows 10 or 11
Virtualization
Software

Min. VMware Workstation
Version 15

Deny Wicaksono, Benfano Soewito

3620 Syntax Literate, Vol. 9, No. 6, Juni 2024

System Testing & Measurement

Figure 4. Flow chart for automation process

Fig. 4 illustrates the complete process of testing simulation which includes the automation

phase. Through the use of the Secure Shell (SSH) protocol and the establishment of a connection
to the particular IP address that has been allocated to the device, the automation server will create
a remote connection to the targeted device. After that, the system will begin the process of logging
in by establishing the settings for the username and password that have been specified. In the
following step, the server will proceed to input configuration commands by utilizing the
Command Line Interface (CLI) of the device. The results of the configuration that were received
will be subjected to a verification procedure in order to determine whether or not the device
configuration was accurate and to locate any potential errors in the direction of the configuration
commands. As soon as the verification procedure of the configuration command has been finished
without any errors, the configuration that is now being used on the device will be stored. After
then, the process of configuring the gadget has been completed in its entirety.

Users' perceptions of delay values, which are regarded to be an important factor, have a
significant impact on the evaluation of the quality of the network service (Tolly, 2021). Relatively
significant changes in the delay value from the beginning to the end can be detrimental to the
effectiveness of communication attempts. In order to guarantee the maintenance of high-quality
real-time traffic, the International Telecommunication Union (ITU) G.114 standard recommends
that the maximum allowable end-to-end delay in one direction should not exceed 150
milliseconds (ms) (Taruk et al., 2018). Table 2 shows the ITU-T G.114 for delay standard.

Table 2. ITU-T G.114 Delay Standard

Category Value
Good 0 – 150 ms
Medium 150 – 400 ms
Poor > 400 ms

The packet loss is an important aspect that should be considered when evaluating the

performance of a service since it has an effect on a wide variety of applications. When the rate of

Application of The Multi-Threading Method and Python Script for The Network Automation

Syntax Literate, Vol. 9, No. 6, Juni 2024 3621

packet loss exceeds a particular threshold, the performance of the system is greatly impacted, and
even when the threshold is at its highest, the system may become completely unusable. Issues
such as congestion and packet loss have a negative impact on the routing of packets and their
effective delivery to the intended destinations (Oleiwi et al., 2022). Table 3 shows the ITU-T
G.114 for packet loss standard.

Table 3. ITU-T G.114 Delay Standard
Category Value

Very Good 0 %
Good 3 %
Medium 15 %
Poor 25%

The Ping application is initiated from the network automation server in order to carry out

measurements of delay and packet loss. During the Ping test, a total of 100 packets are
continuously transmitted over a span of approximately 1 minutes and 40 seconds to selected pair
of servers inside the GNS3 simulated topology. Every Ping packet consists of a 64-byte Internet
Control Message Protocol (ICMP) echo, which is transmitted at regular intervals of one second.
This study focuses on the measurement of the mean delay and percent of packet loss seen in the
final Ping test. The measurement of throughput was conducted by transmitting synthetic network
traffic, which was generated using the Iperf3 application, from the network automation server to
two representative servers inside the GNS3 simulation architecture together with the ping test.
The server responsible for network automation will function as the primary server, while the
remaining two servers will operate as clients. The test employs TCP packets, with a test length of
around 100 seconds. The evaluation of network performance occurs during four specific time
periods throughout the day: late night (00:00 to 06:00), early morning (06:00 to 12:00), late
afternoon (12:00 to 18:00), and early evening (18:00 to 24:00).

Throughput, a quantitative measure of bandwidth at a specific moment and under specific
network conditions, represents the efficiency of data transfer. Throughput is a measure of the
amount of data that can be transmitted over a network during a given time period, and it is directly
related to the capacity needed to transfer a file of a specific size. The system throughput is the
aggregate data transfer rate over the whole network terminal (Taruk et al., 2018). Table 4 shows
the ITU-T G.114 for throughput standard.

Table 4. ITU-T G.114 Throughput Standard

Category Value
Very Good 100%
Good 75%
Medium 50%
Poor 25%

Throughput testing at network of the e-commerce company for study case, requires a

reference value to measure throughput in network simulations using the GNS3 simulator. The
reference value is based on the production network traffic utilization currently running at the site.
The data is taken from the NMS server within a month, with the maximum traffic utilization value
taken at four times. Based on the average value of the traffic, the percentage of traffic utilization
to network capacity that can be used as a reference for throughput testing, namely at 00.00 - 06.00
is 25%, at 06.00 - 12.00 is 27%, at 12.00 - 18.00 is 32% and at 18.00 - 24.00 is 36%.

The GNS3 application, which functions as a network simulator, has restrictions when it
comes to conducting throughput testing. The utilized maximum throughput does not align with
the capacity of the router interface employed for simulation testing. Iperf3 utilizes a client-server
framework to gauge the highest throughput of User Datagram Protocol, TCP, and Stream Control
Transmission Protocol between client and server stations (Tolly, 2021). Iperf3 is intended to

Deny Wicaksono, Benfano Soewito

3622 Syntax Literate, Vol. 9, No. 6, Juni 2024

measure the maximum achievable bandwidth on Internet Protocol-based networks (Kopeć, 2022).
The author performed throughput testing by utilizing the Iperf3 tool to assess the highest possible
capacity of the GNS3 simulator network. This was done by employing a network automation
server and one sample server behind R1 router on the topology. The author discovered that Iperf3
does not impose any restrictions on bandwidth when it comes to achieving maximum throughput.
The average throughput number obtained from these tests reflects the highest network capacity
that can be achieved using the GNS3 simulator. According to the test results, the highest possible
network capacity of the GNS3 simulator we utilize is 12.9 Mbps. This figure will serve as the
benchmark for conducting throughput testing on the GNS3 network simulation.

Result and Discussion

The Cisco devices were setup to conduct a comparative analysis between manual and
automated operations, specifically focusing on the time required for execution and the Quality of
Service (QoS) metrics such as delay, packet loss, and throughput. A total of 11 Cisco devices
were configured by three different methods: manual configuration, serial automatic configuration,
and multi-thread automatic configuration, facilitated by a Python script software. This approach
is implemented to ensure that the outcomes accurately represent the environmental and network
conditions inside an authentic organizational setting. The measurement of time commences upon
initiating the SSH login process to the initial Cisco device and concludes at the completion of
configuring the final Cisco device. The approach is effectively employed for the manual
configuration process. The automatic configuration process, whether serial or parallel, involves
the recording of the configuration process time through the implementation of a Python program.

Manual Configuration

The manual technique necessitates first gaining remote access to the device in order to
make advantage of the SSH protocol. Then, configure the router device by manually inputting
instructions directly by copying and pasting the text editor application into the Linux terminal
program that is linked to the device. This will begin the configuration process. Utilizing the
stopwatch feature of a computer, the duration is calculated by determining the amount of time
that has passed between the beginning and the conclusion of the setup. Fig. 5 shows the time
calculation and manual device configuration process.

Figure 5. Manual configuration process

Two hundred and forty-two seconds, which is equivalent to four minutes, was the total

amount of time that was necessary for the configuration of Cisco equipment. Using these
statistics, it was determined that the average amount of time required to configure a single piece
of Cisco equipment was 22.6 seconds. The time necessary for manual configuration was presented
in Table 5.

Application of The Multi-Threading Method and Python Script for The Network Automation

Syntax Literate, Vol. 9, No. 6, Juni 2024 3623

Table 5. Duration of manual configuration
Process Time Duration (second)

Router 1 - 11 248.20
Average per router 22.56

Serial Automation

A sequential procedure was carried out with the assistance of automation, and it was carried
out in accordance with a topology that had been specified beforehand. 66.65 seconds was the total
length of time that included the entirety of the procedure, beginning with its beginning and ending
with its conclusion. Because of this, it was found that the typical amount of time required to
configure a single piece of Cisco hardware was just 6.06 of a second. The configuration operations
on several router devices were carried out in a sequential manner by the Python script programme.
The programme would finish the configuration on one device before moving on to the next
gadget. This procedure was carried out several times until a total of eleven routers had been
correctly configured. Table 6 presented comprehensive data regarding the procedure for
documenting the commencement time, conclusion time, and duration of every router device
configuration.

Table 6. Duration of serial automation
Process Time Duration (second)

Router 1 - 11 66.65
Average per router 6.06

Multi-thread automation

In order to carry out the configuration process in parallel, the multi-thread automation
method that is commonly referred to as the parallel process approach required the utilization of a
Python script programme. Due to the fact that this technique makes use of the Threading library,
it was necessary to carry out the configuration process concurrently on all of the routers that were
contained inside the specified setup. Therefore, the Python script required a time period of just
41.20 seconds, which was less than one minute, in order to set up a total of eleven Cisco routers.
Using these statistics, it was determined that the average amount of time required to configure a
single piece of Cisco equipment was 3.75 seconds. The findings of the parallel automated
experiment were presented in Table 7.

Table 7. Duration of multi-thread automation

Process Time Duration (second)
Router 1 - 11 41.20

Average per router 3.75

Comparison of Manual and Automatic Results

The utilization of automation strategies, more especially the utilization of a multi-thread
process using a Python programmed, came about as a consequence of a large reduction in the
amount of time that was required for the configuration of eleven Cisco devices. A time savings
of 207 seconds was achieved through the utilization of this technique, which can be regarded as
a small 17% reduction in comparison to the amount of time required for the manual setup of the
devices. Fig. 6 illustrated the comparison of the time required to configure 11 Cisco devices
among the manual approach, serial automation, and parallel automation.

Deny Wicaksono, Benfano Soewito

3624 Syntax Literate, Vol. 9, No. 6, Juni 2024

Figure 6. Time Duration Comparison

In accordance with Cisco's definition, a network of medium size is distinguished by its

capability to provide services for a number of devices ranging from 200 to 1,000 (Academy,
2014). Therefore, in the case of a network of moderate size consisting of one thousand devices,
the process of manually configuring all of the devices takes roughly three hundred and seventy-
six minutes, which is equivalent to a period of six and a half hours. Alternately, the target might
be completed by the use of multi-thread automation, which would result in a time period of 62.4
minutes, which is nearly equivalent to 1.04 hours. As a consequence, the installation of
automation might have led to a reduction of 5.23 man-hours, which is comparable to an 83%
decrease in the amount of time spent.

Modern IT infrastructure management relies on network automation to boost efficiency
and effectiveness. These procedures are usually faster and more successful depending on how
they are executed. Sequential network automation processes can take a long time, especially in
complicated network systems. A proposed switch to multi-thread processing is advised to
overcome this issue and speed up implementation. In this case, Python script change is crucial.
Network engineers can utilise threading libraries like the popular one to turn automated operations
into multi-threaded activities. This method allows splitting jobs onto many threads, making
concurrent execution easier and allowing automation operations to be handled simultaneously.
Because of this, network administrators may boost velocity and efficacy, which can reduce the
time needed to perform key network management tasks. This ensures that network automation
meets current IT environments' changing needs.

Quality of Service (QoS) Measurements

This study investigated the assessment of delay and evaluation of data transfer capacity in
the context of network automation. The assessment of delay was conducted using the Ping
application from Linux terminal. Ping was sent from the automation server to the personal
computers located in IDC1 and IDC2. Fig. 7 shows ping result during testing.

Application of The Multi-Threading Method and Python Script for The Network Automation

Syntax Literate, Vol. 9, No. 6, Juni 2024 3625

Figure 7. Ping result during testing

Based on the results of testing using the GNS3 simulator, the average test delay results

show a negligible difference of less than 1 millisecond. This indicates that there is no major
distinction between the manual, serial, and multi-thread techniques. The test results from two test
servers, using three methodologies and four distinct testing times, consistently show a latency of
less than 50 milli second. Although the results of packet loss tests are nearly same, there is a slight
variance in the average packet loss, which is less than 1 percent. The average packet loss findings
of the three approaches at four different periods range from 0.71% to 1.43%. This indicates that
among 100 Ping tests, the number of request time out results on the ICMP packet transmitted is
fewer than 2. Table 8 displays the outcomes of the experiments conducted to measure delay and
packet loss.

Table 8. Delay and Packet loss measurements

Time Server IP
Address

Delay (milli second) Packet Loss (%)

Manual Serial Multi-
Thread Manual Serial Multi-

Thread
00:00 -
06:00

124.158.1.2 48,69 47,39 47,22 0,71 1,09 1,00
124.158.2.2 47,66 47,01 47,07 0,83 1,03 0,80

06:00 -
12:00

124.158.1.2 48,14 48,55 47,68 1,00 0,94 1,23
124.158.2.2 48,23 48,58 48,93 0,91 0,97 1,00

12:00 -
18:00

124.158.1.2 49,98 49,53 47,00 1,31 1,43 0,77
124.158.2.2 49,65 49,90 48,61 1,26 1,29 1,03

18:00 -
24:00

124.158.1.2 49,88 49,73 49,34 1,43 1,23 1,34
124.158.2.2 49,82 49,96 49,76 1,43 1,40 1,40

Based on the requirements set by ITU-T G.114 regarding delay and packet loss, it may be

inferred that the test delay findings are classified as "good." This means that the average delay
recorded is less than 150 milli second. Regarding the results of the packet loss test, it falls under
the good category as the average packet loss is below 3%.

The Iperf3 traffic generator program was employed in throughput testing to transmit TCP
packets from the network automation server to two sample servers within the GNS3 simulation
architecture in IDC1 and IDC2. Fig. 8 illustrated the throughput test result using Iperf3
application.

Deny Wicaksono, Benfano Soewito

3626 Syntax Literate, Vol. 9, No. 6, Juni 2024

Figure 8. Throughput test result using Iperf3

According to the measurements, the manual, serial, and multi-threaded methods all produced

the same throughput test results at four different times categories. Specifically, the throughput
was 3.2 Mbps from 00:00 to 06:00, 3.5 Mbps from 06:00 to 12:00, 4.1 Mbps from 12:00 to 18:00,
and 4.6 Mbps from 18:00 to 24:00. This demonstrates that while the GNS3 simulator has
constraints on its maximum traffic capacity, it does not align with the interface on the router
device. However, GNS3 can direct traffic depending on the percentage of use, as per the
references from the production network at e-commerce company. The experimental results for
measuring throughput of each configuration approach utilized were presented in Table 9.

Table 9. Throughput Measurement

Time Server IP
Address

Throughput Test
Manual Serial Multi-Thread

Reference
(Mbps)

Result
(Mbps)

Reference
(Mbps)

Result
(Mbps)

Reference
(Mbps)

Result
(Mbps)

00:00 -
06:00

124.158.1.2 3,2 3,2 3,2 3,2 3,2 3,2
124.158.2.2 3,2 3,2 3,2 3,2 3,2 3,2

06:00 -
12:00

124.158.1.2 3,5 3,5 3,5 3,5 3,5 3,5
124.158.2.2 3,5 3,5 3,5 3,5 3,5 3,5

12:00 -
18:00

124.158.1.2 4,1 4,1 4,1 4,1 4,1 4,1
124.158.2.2 4,1 4,1 4,1 4,1 4,1 4,1

18:00 -
24:00

124.158.1.2 4,6 4,6 4,6 4,6 4,6 4,6
124.158.2.2 4,6 4,6 4,6 4,6 4,6 4,6

On the basis of the delay and packet loss standards established by ITU G.114, we are able

to draw the conclusion that the throughput test results are in the good category. This is because
the throughput generated reaches 100 percent of the traffic that was transmitted by the Iperf3
server at four different test times.

The data obtained from tests measuring delay, packet loss and throughput in network
configuration have shown several aspects that necessitate additional comprehension. Despite the
absence of statistically significant disparities in characteristics such as delay, packet loss, and
throughput among manual, serial automated, and multi-thread automated configuration
approaches, it is crucial to acknowledge that these findings may have relevance within a particular
experimental context based on the topology and network simulator employed, but their direct
applicability to all network scenarios may be limited. Hence, it is imperative to conduct additional
research and undertake a comprehensive analysis in order to comprehend the ramifications of
these discoveries on wider network construction methodologies.

These tests offer intriguing first findings on network configuration and Quality of Service
(QoS). However, there remain some elements that warrant further investigation. To arrive at more

Application of The Multi-Threading Method and Python Script for The Network Automation

Syntax Literate, Vol. 9, No. 6, Juni 2024 3627

thorough results, it may be imperative to get a deeper comprehension of the various aspects that
influence Quality of Service (QoS) and their potential interactions with network configuration.
Additionally, it may contribute to the advancement of optimal network management and
optimization strategies, particularly in intricate and high-capacity network environments.

Conclusion

First and foremost, the purpose of this investigation is to identify the most efficient
approach to enhancing the effectiveness of script programming in the process of configuring
network devices. In addition, the purpose of the research is to ascertain the amount of time that is
necessary for the setup of network devices by employing three different automation methods: the
manual method, the serial automation method, and the multi-thread automation method. In order
to design the topology of the network, a total of eleven Cisco router devices were utilised in
combination with the GNS3 network simulator. For the purpose of facilitating the actual
application of automation, the topology was constructed in an appropriate manner. The particular
objective was to reduce the amount of time required for Cisco devices to be configured and to
reduce the number of errors that occurred. As a result of the findings of the study, it is clear that
the use of the multi-thread strategy for the purpose of automating the configuration of network
devices results in a considerable improvement in the effectiveness of the script, particularly with
regard to the speed, when compared to the manual method. As a result of this performance, it is
clear that automation is an effective method for configuring network equipment. Automation has
the ability to cut the amount of time needed for setup by as much as 83 percent. When it comes
to the results of speed calculations, the parallel automation strategy demonstrates a sixfold gain
in efficiency in comparison to the manual method, and a one-and-a-half-fold rise in comparison
to the serial automation method. Furthermore, it has been discovered that there is no statistically
significant difference in the outcomes of testing packet loss, delay, and throughput with manual
configuration, serial automation, and multi-thread automation. This is the conclusion that can be
drawn from the findings. Incorporating network automation techniques for the aim of widening
the scope of network setup with the intention of enhancing future research endeavors is a
recommendation that should be taken into consideration.

BIBLIOGRAPHY

Academy, C. N. (2014). Connecting networks companion guide. WebEx

Communications.
Aguado, A., Lopez, V., Martinez-Mateo, J., Peev, M., Lopez, D., & Martin, V. (2018).

Virtual network function deployment and service automation to provide end-to-end
quantum encryption. Journal of Optical Communications and Networking, 10(4),
421–430.

Arifin, M. A. Z., Kassim, M., & Suliman, S. I. (2019). Automation security system with
laser lights alarm on web pages and mobile apps. 2019 IEEE 9th Symposium on
Computer Applications & Industrial Electronics (ISCAIE), 287–292.

Ayasso, H., & Mohammad-Djafari, A. (2010). Joint NDT image restoration and
segmentation using Gauss–Markov–Potts prior models and variational Bayesian
computation. IEEE Transactions on Image Processing, 19(9), 2265–2277.

Bouhouras, A. S., Andreou, G. T., Labridis, D. P., & Bakirtzis, A. G. (2010). Selective
automation upgrade in distribution networks towards a smarter grid. IEEE
Transactions on Smart Grid, 1(3), 278–285.

Kopeć, J. (2022). Evaluating Methods of Transferring Large Datasets. Asian Conference
on Supercomputing Frontiers, 102–120.

Deny Wicaksono, Benfano Soewito

3628 Syntax Literate, Vol. 9, No. 6, Juni 2024

Larsson, J. (2020). Network Automation in a Multi-vendor Environment (Dissertation).
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-80810

Mauboy, L. G., & Wellem, T. (2022). Studi Perbandingan Library Untuk Implementasi
Network Automation Menggunakan Paramiko Dan Netmiko Pada Router Mikrotik.
JURIKOM (Jurnal Riset Komputer), 9(4), 790–799.

Maurice, C., Weber, M., Schwarz, M., Giner, L., Gruss, D., Boano, C. A., Mangard, S.,
& Römer, K. (2017). Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. NDSS, 17, 8–11.

Mazin, A. M., Ab Rahman, R., & Kassim, M. (2021). Performance analysis on network
automation interaction with network devices using python. 2021 IEEE 11th IEEE
Symposium on Computer Applications & Industrial Electronics (ISCAIE), 360–366.

Mihăilă, P., Bălan, T., Curpen, R., & Sandu, F. (2017). Network automation and
abstraction using Python programming methods. MACRo 2015, 2(1), 95–103.

Nugroho, S., & Pujiarto, B. (2022). Network Automation Pada Beberapa Perangkat
Router Menggunakan Pemrograman Python. Jurnal Teknologi Informasi Dan Ilmu
Komputer, 9(1), 79–86.

Oleiwi, S. S., Mohammed, G. N., & Al_barazanchi, I. (2022). Mitigation of packet loss
with end-to-end delay in wireless body area network applications. International
Journal of Electrical and Computer Engineering, 12(1), 460.

Smolaks, M. (2016). Telstra blames major network outage on human error.
https://www.datacenterdynamics.com/en/news/telstra-blames-major-network-
outage-on-human-error/

Taruk, M., Budiman, E., Rustam, M. R., Azis, H., & Setyadi, H. J. (2018). Quality of
service voice over internet protocol in mobile instant messaging. 2018 2nd East
Indonesia Conference on Computer and Information Technology (EIConCIT), 285–
288.

Tolly, K. (2021). How to use iPerf3 to test network bandwidth. Networking.
Veriflow. (2016). Global Survey Reveals Complexity, Change and Human Factors Are

Key Causes of Today’s Network Outages and Vulnerabilities. GlobeNewswire News
Room. https://www.globenewswire.com/news-
release/2016/11/15/1195128/0/en/Global-Survey-Reveals-Complexity-Change-
and-Human-Factors-Are-Key-Causes-of-Today-s-Network-Outages-and-
Vulnerabilities.html

Waheed, F., & Ali, M. (2018). Hardening CISCO Devices based on Cryptography and
Security Protocols-Part II: Implementation and Evaluation. Annals of Emerging
Technologies in Computing (AETiC), Print ISSN, 281–2516.

Web Pages and Mobile Apps. (2019). 2019 IEEE 9th Symposium on Computer
Applications & Industrial Electronics (ISCAIE).
https://doi.org/10.1109/iscaie.2019.8743998

Ylonen, T., Turner, P., Scarfone, K., & Souppaya, M. (2015). Security of interactive and
automated access management using Secure Shell (SSH). NISTIR 7966, National
Institute of Standards and Technology.

Application of The Multi-Threading Method and Python Script for The Network Automation

Syntax Literate, Vol. 9, No. 6, Juni 2024 3629

Copyright holder:
Deny Wicaksono, Benfano Soewito (2024)

First publication right:

Syntax Literate: Jurnal Ilmiah Indonesia

This article is licensed under:

