
How to cite: Samidi. et al (2022) Gradient Analysis In Implementation of B-Tree Indexing In Reporting Annual Tax

Database, Syntax Literate: Jurnal Ilmiah Indonesia, 7(1).
E-ISSN: 2548-1398

Published by: Ridwan Institute

Syntax Literate: Jurnal Ilmiah Indonesia p–ISSN: 2541-0849

e-ISSN: 2548-1398

Vol. 7, No. 3, Maret 2022

GRADIENT ANALYSIS IN IMPLEMENTATION OF B-TREE INDEXING IN

REPORTING ANNUAL TAX DATABASE

Samidi, Shofinurdin, Andra Setiadi, Danar Darmawan, Dika Andharu

Universitas Budi Luhur, Indonesia

Email: samidi.indonesia@gmail.com, shofinurdin@gmail.com,

andrasetiadi85@gmail.com, danard.darmawan@gmail.com,

dikaandharu04@gmail.com

Abstract

A query is a syntax or command used in a database system to access and display

data. Queries can be used to make data interact with each other. To display query

results in the database, of course, requires execution time which is usually denoted

in seconds. Execution time is directly proportional to the amount of data to be

displayed and the level of complexity of the database. To speed up query execution

time, the term database optimization is known. One of the database optimization

methods is to use the b-tree indexing technique the database. This study aims to

compare the execution time of databases that have not been indexed or that have

been indexed with data objects in the MySQL database MPN-Info application at the

Jakarta Palmerah Tax Office (KPP Pratama Jakarta Palmerah). This application was

developed to supervise taxpayers which is used in almost all tax service offices

throughout Indonesia. The data used is active employee status taxpayer data

registered until 2020 with the reporting of Annual Personal Income Tax Returns in

2019 and 2020. The study uses an experimental method by applying a select query,

then the execution time is recorded well for unindexed and indexed databases. The

gradient method will be used for compare the results of the two. The results

obtained are after taking the population of taxpayers registered employees up to

year In 2020 at KPP Pratama Jakarta Palmerah, 31,238 data were compared with

the annual reporting data, the average execution time before indexing was 255.585

seconds and the average time after indexing was 1.341 seconds and the gradient

value before indexing was 0.0211 and after indexing was 0.0001. This proves that

the indexing technique has a significant impact in accelerating the query execution

process.

Keywords: queries; mysql; b-tree indexing; gradient; database optimization

Introduction

Today there are many applications that use databases, either free or paid, such as

MySQL, Postgree SQL, Oracles and others. One of the functions of the database is to

group data and simplify the process of identifying data. The database will display data

according to user requests with a fast process using Database Management Systems

(DBMS) software. Another function is to facilitate access, edit, add, delete and store

data.

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1478238617&1&&
https://ridwaninstitute.co.id/?gclid=Cj0KCQjw1PSDBhDbARIsAPeTqre27WQEOvDsM7Po0dunLb1i14pZaIdIwjZrij7qwSYYKq8ZCrnzYSoaAumDEALw_wcB
mailto:samidi.indonesia@gmail.com
mailto:andrasetiadi85@gmail.com

Samidi, Shofinurdin, Andra Setiadi, Danar Darmawan, Dika Andharu

1306 Syntax Literate, Vol. 7, No. 3, Maret 2022

Among the applications that use the database is the MPN-info (State Revenue

Module) application. MPN-Info is an application developed by Ichdyan Thalasa and

Yogi Iskandar and used by Account Representative (Tax Supervisor) in supervising

taxpayers. This application is used in almost all tax service offices throughout

Indonesia. The desktop-based MPN-info application is deployed using C++ language

while the database uses MySQL.

Taxpayer supervision is carried out, among others, by supervising taxpayer

reporting compliance. This reporting compliance data can be retrieved from the mpn-

info database by executing a select query that pairs the masterfile table and the

annual_report table. When tested on the query turns out to take a long time. To retrieve

a data value of 100 records takes 18.5 seconds and for 30,000 data records it takes 650

seconds. This causes dissatisfaction and the question arises whether the execution time

can be accelerated or not.

Some theories state that using an index, namely giving an identifier to the data in

the database can streamline the search process, including (Elmasri & Navathe, 2010)

explains that index used in the database can speed up data retrieval when running

queries. Balasubramanian et al (Balasubramanian & Sabharwal, 2013) also argue that

information retrieval can be made more efficient by using indexes to provide quick

access to databases. Furthermore, Guzun et al (Guzun & Canahuate, 2016) suggested

that to support query efficient mechanism is needed right indexing.

In the indexing technique there are also several methods that can be used, one of

which is the B-Tree method. B-Tree is a one-dimensional indexing method and is a

nested hierarchical indexing method for data access from peripheral data stores. B-Tree

is a tree data structure where each leaf has the same height. B-Tree was first created by

Rudolf Bayer and Ed McCreight in 1972. B-Tree was made possible to store a lot of

data in one node, the number of subtrees can also be very large. For this reason, B-Tree

is very suitable for use in managing data on disk (Mushofan, 2014).

Several studies that have discussed the use of indexing include: Putra et al (Putra,

Darwiyanto, & Gozali, 2015) who implemented B-Tree to perform full text indexing on

electronic documents. In his research, Putra et al conducted indexing of text documents.

Then Dongoran et al (Dongoran, Saleh, & Gozali, 2015) also conducted research related

to indexing. In their research, Dongoran et al discusses the application of indexing to

graph databases. Graph database itself is a database representation using a different

graph with a general relational database. Next Huda Ayesh Mashaan Alrashidi

(Alrashidi & Farhan, 2011) on his research six index techniques, namely B-tree, reverse,

organization, clustered, non-clustered and bitmap on Oracle and MS SQL Server. Then

Ammar et al (A. Ammar, M. Zainuri Sarringan, S. A-mostafa, A. Mustapha, 2020) in

their research discussed the differences in the application of indexing with the B-Tree

and Hash Map methods using the MySQL and PostgreSQL platforms. Aminudin et al

(Mostafa, 2020) also conducts research related to indexing. In their research, Aminudin

et al implements B-Tree indexing for PostgreSQL databases. Amminudin et al

Gradient Analysis In Implementation of B-Tree Indexing In Reporting Annual Tax

Database

Syntax Literate, Vol. 7, No. 3, Maret 2022 1307

recommend further investigation such as improved algorithm of existing B-Tree where

B-Tree tends to have longer time against large amount of data.

The studies mentioned above have implemented indexing techniques but none have

compared the slope/ gradient value to query execution time with different data both

before indexing and after indexing. As for this study, besides comparing the difference

in the average execution time before and after indexing with the B-Tree indexing

technique, it also analyzes the value of the slope/trend of the relationship between the

amount of data and its execution time using gradient analysis.

Gradient analysis is a method for comparing trend patterns from several locations

by observing the level of slope of the line connecting the two variables. The gradient or

direction coefficient (m) is a constant that indicates the level of slope of a line

(Handajani, 2009). Look at the following picture:

Figure 1

Gradient

The commonly used mathematical formula is y = mx + c, where m, c ∈ R, c are

constants (intercepts), where m represents the gradient (slope) of the coefficient of the

straight line.

The purpose of this study is to prove the database indexing theory by comparing

the query execution speed in the mpn-info database before indexing with after indexing,

and to see the difference in the slope/trend of execution speed for querying data with

different amounts using the gradient analysis method.

Research Method

This study uses an experimental method by applying a select query to the MPN-

Info application database and then recording the execution time for both unindexed and

deindexed databases for later analysis.

The scope of this research is to retrieve data from the MySQL database in the

MPN-Info application. The query used is a query to find taxpayer data on the status of

active employees registered in 2020 and earlier with annual SPT reporting 2019 and

Samidi, Shofinurdin, Andra Setiadi, Danar Darmawan, Dika Andharu

1308 Syntax Literate, Vol. 7, No. 3, Maret 2022

2020, the query is run to generate results record 100, 500, 1000, 5000, 10000, 15000,

20000, 25000 and 30000 data, the index technique used is the index with B-Tree, the

method used to compare the level of slope is the gradient analysis method with the

mathematical formula y = mx + c.

This research was conducted using a macbook pro mid 2012 laptop with

specifications for Intel Core i5-3210M CPU @ 2.50GHz, 16 GB RAM, Windows 10

Pro 64 bit OS, while the tools used are SQLYog Professional for GUI databases,

Microsoft Excel for visualization, Jupyter notebook for visualization and modelling.

The steps taken in this study after understanding the problem and literature review are

data collection, query creation, query result analysis before indexing, indexing, query

analysis after indexing and gradient analysis.

Figure 1

Research Framework

Discussion

A. Data Collection

This study uses the MySQL database MPN-Info application at KPP Pratama

Jakarta Palmerah (Jakarta Palmerah Tax Office). Data retrieval is taken by backuping

manually using the SQLYog application.

B. Query Creation

The selection query to retrieve individual taxpayer data on employee status

registered up to 2020 and annual tax returns for the 2019 and 2020 tax years is by

juxtaposing the taxpayer masterfile table and the annual report transaction table.

Gradient Analysis In Implementation of B-Tree Indexing In Reporting Annual Tax

Database

Syntax Literate, Vol. 7, No. 3, Maret 2022 1309

Figure 3

Query Selection

Furthermore, from the query execution, the results can be seen in the following

figure:

Figure 4

Query Execution Results

C. Analysis of Query Results before indexing

Sequentially by executing queries for databases that have not applied indexing to

different amounts of data, the execution time can be seen in the graphic image as

follows:

Samidi, Shofinurdin, Andra Setiadi, Danar Darmawan, Dika Andharu

1310 Syntax Literate, Vol. 7, No. 3, Maret 2022

Figure 5

Graph of Query Results Before Indexing

Based on the graphic image, we can see that the more data displayed, the more

query execution time is required.

D. Giving Index

Giving an index on the masterfile table with the name tax_id_idx_masterfile

with the command:

Giving an index to the annual_report table with the name tax_id_idx_report with

the command:

E. Query Analysis After Indexing

After indexing the database, the query execution is carried out and the results

can be seen in the graphic image:

Gradient Analysis In Implementation of B-Tree Indexing In Reporting Annual Tax

Database

Syntax Literate, Vol. 7, No. 3, Maret 2022 1311

Figure 6

Graph of Query Results After Indexing

Based on Figure 6, we can see that the more data displayed, the more query

execution time is needed, this looks the same as the query execution results before

indexing, but for more details it can be seen the average execution time of both in the

following table and graph:

Table 1

Query execution time

Amount of data retrieved Time (seconds)

(records) After indexing Before indexing

100 0.015 18.49

500 0.057 19,265

1000 0.082 39,511

5000 0.328 103

10000 1,267 197

15000 1,791 316

20000 2,466 418

25000 3.010 539

30000 3.052 650

Average 1.341 255.585

Samidi, Shofinurdin, Andra Setiadi, Danar Darmawan, Dika Andharu

1312 Syntax Literate, Vol. 7, No. 3, Maret 2022

Figure 7

Comparison Graph of Average

Query Execution Time

It can be seen in table 1 and figure 6 that the average execution time before

indexing is 255.585 seconds and the average execution time after indexing is 1.341

seconds. There is a significant time difference of 254.244 seconds.

F. Testing With Gradient Analysis

As previously explained, the query execution time before and after indexing

increases when more data is to be displayed. To test the increase in both times, the

researcher chose the gradient analysis method to test it. The researcher uses a linear

regression mathematical model approach to find the gradient value. By using scatter

plot library In the python programming language, the results of the distribution of

data and gradient lines are as follows:

Gradient Analysis In Implementation of B-Tree Indexing In Reporting Annual Tax

Database

Syntax Literate, Vol. 7, No. 3, Maret 2022 1313

Figure 8

Distribution of Data and Gradient

Lines Before Indexing

Figure 9

Distribution of Data and Gradient

Lines After Indexing

From the two images it is not clear the difference between the two, the

researcher then uses Microsoft excel to display the two linear lines in one graph to

see the difference as shown in the picture:

Samidi, Shofinurdin, Andra Setiadi, Danar Darmawan, Dika Andharu

1314 Syntax Literate, Vol. 7, No. 3, Maret 2022

Figure 10

Gradient Comparison

From the figure 10 the equation of the mathematical formula before indexing

can be taken Y = 0.0211X + 5.9271 and after indexing Y = 0.0001X + 0.0032. It can

be seen that the gradient and constant values after indexing are smaller than before

indexing with a significant difference, namely 0.021 for gradient and 5.9239 for

constant.

Conclusion

From the results of this study, it was found that using indexing in the database can

speed up query execution time compared to not using indexing, with an average

execution time difference of 254.244 seconds with average breakdown 1.341 seconds

after indexing and average 255.585 seconds before indexing. In this study also obtained

a significant difference in the results of the gradient 0.021 of the query data before and

after using indexing where the mathematical formula is obtained before indexing: Y =

0.0211X + 5.9271 and after indexing : Y = 0.0001X + 0.0032. This proves that the

indexing technique has a significant impact in accelerating the query execution process

Researchers suggest for management and developers of MPN-info applications to use

the B-Tree indexing technique so that the query execution process will be faster, and for

further research to compare the B-Tree indexing method with other methods.

Gradient Analysis In Implementation of B-Tree Indexing In Reporting Annual Tax

Database

Syntax Literate, Vol. 7, No. 3, Maret 2022 1315

BIBLIOGRAFI

A. Ammar, M. Zainuri Sarringan, S. A-mostafa, A. Mustapha, and S. Hamad Khaleefah.

(2020). Analyzing the Effect of Data Size Variation on the Performance of B-Tree

and Hash Map Indexing in MySQL. 7(12). Google Scholar

Alrashidi, Huda Ayesh Mashaan, & Farhan, Hazim A. (2011). A Comparative Study of

Indexing Techniques for Relational Database Management Systems. Middle East

University. Google Scholar

Balasubramanian, Meiyalagan, & Sabharwal, Rohit. (2013, July 16). Dynamic

integrated database index management. Google Patents. Google Scholar

Dongoran, Emir Septian Sori, Saleh, W. Kemas Rahmat, & Gozali, Alfian Akbar.

(2015). Analysis and implementation of graph indexing for graph database using

GraphGrep algorithm. 2015 3rd International Conference on Information and

Communication Technology (ICoICT), 59–64. IEEE. Google Scholar

Elmasri, Ramez, & Navathe, Shamkant B. (2010). Fundamentals of Databases.

Addison-Wesley. Google Scholar

Guzun, Gheorghi, & Canahuate, Guadalupe. (2016). Hybrid query optimization for

hard-to-compress bit-vectors. The VLDB Journal, 25(3), 339–354. Google Scholar

Handajani, Mudjiastuti. (2009). Analisis Gradien Kepadatan Penduduk dan Konsumsi

BBM. Jurnal Teknik Sipil Dan Perencanaan, 11(2), 141–148. Google Scholar

Mostafa, Salama A. (2020). A Case Study on B-Tree Database Indexing Technique.

Journal of Soft Computing and Data Mining, 1(1), 27–35. Google Scholar

Mushofan, A. (2014). “B-trees and their application in databases,.” Google Scholar

Putra, Diken Pradana, Darwiyanto, Eko, & Gozali, Alfian Akbar. (2015). Implementasi

Fulltext Indexing pada Dokumen Elektronik dengan Algoritma B-Tree.

EProceedings of Engineering, 2(1). Google Scholar

Copyright holder:

Samidi, Shofinurdin, Andra Setiadi, Danar Darmawan, Dika Andharu (2022)

First publication right:

Syntax Literate: Jurnal Ilmiah Indonesia

This article is licensed under:

https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Sutarman%2C+H.%2C+Widiana%2C+I.+Gde%2C+%26+Amin%2C+Ihsan.+%282007%29.+Cyber+crime%3A+modus+operandi+dan+penanggulangannya.+LaksBang+Pressindo&btnG=
https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Alrashidi%2C+Huda+Ayesh+Mashaan%2C+%26+Farhan%2C+Hazim+A.+%282011%29.+A+Comparative+Study+of+Indexing+Techniques+for+Relational+Database+Management+Systems.+Middle+East+University&btnG=
https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Balasubramanian%2C+Meiyalagan%2C+%26+Sabharwal%2C+Rohit.+%282013%2C+July+16%29.+Dynamic+integrated+database+index+management.+Google+Patents&btnG=
https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Dongoran%2C+Emir+Septian+Sori%2C+Saleh%2C+W.+Kemas+Rahmat%2C+%26+Gozali%2C+Alfian+Akbar.+%282015%29.+Analysis+and+implementation+of+graph+indexing+for+graph+database+using+GraphGrep+algorithm.+2015+3rd+International+Conference+on+Information+and+Communication+Technology+%28ICoICT%29%2C+59%E2%80%9364.+IEEE&btnG=
https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Elmasri%2C+Ramez%2C+%26+Navathe%2C+Shamkant+B.+%282010%29.+Fundamentals+of+Databases.+Addison-Wesley&btnG=
https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Guzun%2C+Gheorghi%2C+%26+Canahuate%2C+Guadalupe.+%282016%29.+Hybrid+query+optimization+for+hard-to-compress+bit-vectors.+The+VLDB+Journal%2C+25%283%29%2C+339%E2%80%93354&btnG=
https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Handajani%2C+Mudjiastuti.+%282009%29.+Analisis+Gradien+Kepadatan+Penduduk+dan+Konsumsi+BBM.+Jurnal+Teknik+Sipil+Dan+Perencanaan%2C+11%282%29%2C+141%E2%80%93148&btnG=
https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Mostafa%2C+Salama+A.+%282020%29.+A+Case+Study+on+B-Tree+Database+Indexing+Technique.+Journal+of+Soft+Computing+and+Data+Mining%2C+1%281%29%2C+27%E2%80%9335.&btnG=
https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Mostafa%2C+Salama+A.+%282020%29.+A+Case+Study+on+B-Tree+Database+Indexing+Technique.+Journal+of+Soft+Computing+and+Data+Mining%2C+1%281%29%2C+27%E2%80%9335.&btnG=
https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Putra%2C+Diken+Pradana%2C+Darwiyanto%2C+Eko%2C+%26+Gozali%2C+Alfian+Akbar.+%282015%29.+Implementasi+Fulltext+Indexing+pada+Dokumen+Elektronik+dengan+Algoritma+B-Tree.+EProceedings+of+Engineering%2C+2%281%29.&btnG=
http://jurnal.syntaxliterate.co.id/index.php/syntax-literate/article/view/2701
https://creativecommons.org/licenses/by-sa/4.0/

