Visualisasi Model 3D Dinamis Berbasis Web Menggunakan WEBGL

  • Moch Fachri Universitas Krisnadwipayana
  • Risanto Darmawan Universitas Krisnadwipayana
Keywords: visualisasi 3d, WebGL, Graphic library

Abstract

Penelitian ini memanfaatkan suatu graphic library yang memungkinkan visualisasi model dimensi 3(3D) pada website. Graphic library yang dimaksud adalah WebGL. Visualisasi objek didunia nyata dengan foto biasa tidak mewakili perspektif dimensi tiga dari objek tersebut. Hal ini dikarenakan foto diambil dari satu perspektif, kemudian memproyeksikan objek dunia nyata yang memiliki ukuran volumetrik kedalam bidang planar dalam bentuk citra digital. Karena itulah WebGL sebagai graphic library yang bersifat open source dan mendukung penggunaan dalam website, dapat menjadi solusi dalam visualisasi 3D dalam bentuk aplikasi berbasis web. Hasil yang didapat menunjukkan tampilan visualisasi 3D yang tertanam pada server website, dan dapat ditampilkan dalam antarmuka client yang mengakses konten visualisasi pada server tersebut.

Downloads

Download data is not yet available.

References

Alverson, G., Eulisse, G., Muzaffar, S., Osborne, I., Taylor, L., & Tuura, L. A. (2004). IGUANA: A high-performance 2D and 3D visualisation system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 534(1–2), 143–146. https://doi.org/10.1016/j.nima.2004.07.036
Boutsi, A.-M., Ioannidis, C., & Soile, S. (2019). INTERACTIVE ONLINE VISUALIZATION OF COMPLEX 3D GEOMETRIES. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W9, 173–180. https://doi.org/10.5194/isprs-archives-XLII-2-W9-173-2019
Brown, P. M., Hamilton, N. M., & Denison, A. R. (2012). A novel 3D stereoscopic anatomy tutorial. The Clinical Teacher, 9(1), 50–53. https://doi.org/10.1111/j.1743-498X.2011.00488.x
Hristov, P., & Petkov, E. (2019). Study of 3D Technologies for Web. p. 6. in Conference: Digital Presentation and Preservation of Cultural and Scientific HeritageAt: Bulgaria Volume: 9, Oct.2019.
Liu, D., Peng, J., Wang, Y., Huang, M., He, Q., Yan, Y., Ma, B., Yue, C., & Xie, Y. (2019). Implementation of interactive three-dimensional visualization of air pollutants using WebGL. Environmental Modelling & Software, 114, 188–194. https://doi.org/10.1016/j.envsoft.2019.01.019
Mi, Q., Zhai, Z., Wang, J., Cai, Z., Cheng, L., & Wu, M. (2019). VRML-Based Investigation of Binary Compression Technology. 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2114–2117. https://doi.org/10.1109/ICIEA.2019.8834151
Miao, R., Song, J., & Zhu, Y. (2017). 3D geographic scenes visualization based on WebGL. 2017 6th International Conference on Agro-Geoinformatics, 1–6. https://doi.org/10.1109/Agro-Geoinformatics.2017.8046999
Mobeen, M. M., & Feng, L. (2012). High-Performance Volume Rendering on the Ubiquitous WebGL Platform. 2012 IEEE 14th International Conference on High Performance Computing and Communication & 2012 IEEE 9th International Conference on Embedded Software and Systems, 381–388. https://doi.org/10.1109/HPCC.2012.58
Satish, C. J., & Mahendran, A. (2019). The effect of 3D visualization on mainframe application maintenance: A controlled experiment. Journal of King Saud University - Computer and Information Sciences, 31(3), 403–414. https://doi.org/10.1016/j.jksuci.2017.03.003
Saunders, B. V. (n.d.). Complex Variables, Mesh Generation, and 3D Web Graphics: Research and Technology Behind the Visualizations in the NIST Digital Library of Mathematical Functions. 12.
Shi, M., Gao, J., & Zhang, M. Q. (2017). Web3DMol: Interactive protein structure visualization based on WebGL. Nucleic Acids Research, 45(W1), W523–W527. https://doi.org/10.1093/nar/gkx383
SIGGRAPH LA 2010—The Khronos Group Inc. (2010). Retrieved September 1, 2020, from https://www.khronos.org/events/siggraph-la-2010/
Stefan, L., Hermon, S., & Faka, M. (2018). Prototyping 3D Virtual Learning Environments with X3D-based Content and Visualization Tools. 9, 15.
Storz, P., Buess, G. F., Kunert, W., & Kirschniak, A. (2012). 3D HD versus 2D HD: Surgical task efficiency in standardised phantom tasks. Surgical Endoscopy, 26(5), 1454–1460. https://doi.org/10.1007/s00464-011-2055-9
WebGL Overview—The Khronos Group Inc. (2020). Retrieved September 1, 2020, from https://www.khronos.org/webgl/
Yuan, S., Chan, H. C. S., & Hu, Z. (2017). Implementing WebGL and HTML5 in Macromolecular Visualization and Modern Computer-Aided Drug Design. Trends in Biotechnology, 35(6), 559–571. https://doi.org/10.1016/j.tibtech.2017.03.009
Published
2022-10-22