Syntax Literate: Jurnal Ilmiah Indonesia p�ISSN: 2541-0849 e-ISSN: 2548-1398

Vol. 8, No. 1, Januari 2023

 

IMPACT OF CLIMATE CHANGE ON METEOROLOGICAL DROUGHT IN INSANA BARAT DISTRICT, TIMOR TENGAH UTARA, EAST NUSA TENGGARA

 

Maria Serlince Sanit, Turningtyas Ayu Rachmawati, Nailah Firdausiyah

Brawijaya University, Malang, Indonesia.

Email: [email protected], [email protected], [email protected]����

����� ����������������������

Abstract

Uncertain climate change has an impact on the limited availability of surface water and low rainfall, causing� Insana Barat District to become one of the areas prone to drought. Drought is a cause of poverty because it is usually associated with the cycle and spread of disease and threats to food security. Therefore, it is necessary to identify drought characteristics in this region for early anticipation and adaptation to reduce the impact of drought due to current and future climate variability. The Standardized Precipitation Index (SPI) is an index used to determine the deviation of rainfall from normal over a long period. The SPI method was chosen because of its ability to calculate the index and describe the severity of drought, and it is simpler than other methods. The advantage of SPI is that it is sufficient to use monthly rainfall data to compare drought levels between regions even with different climate types. The data used in this study is rain data from rain stations located in Insana Barat District from 2007 to 2021. The results show that in the drought deficit period the deficit period is 3 months in 2021 with an index value of -5.123. The worst 6-month deficit period for the -4,458 index occurred in 2020. The worst 12-month drought index deficit period of -2,191 occurred in 2021.

 

Keywords: Android, Google Maps, Tickets, Apps.

 

Introduction

Climate change is characterized by increasing temperatures, rainfall, and more extreme climatological events (de Oliveira-J�nior, J. F., de Gois, G., de Bodas Terassi, P. M., da Silva Junior, C. A., Blanco, C. J. C., Sobral, B. S., & Gasparini, 2018) Climate change is a phenomenon natural influences on stability atmosphere (Pangestu & Gernowo, 2015). These changes, pose major challenges for agricultural production and water resources (Hidayati, 2017) (Sutrisno, N., & Hamdani, 2019). Droughts are natural disasters that can occur anywhere, cause prolonged periods of water shortage in various parts or throughout the hydrological cycle, and can be modulated or amplified by other natural processes and human activities (Chan, S. S., Seidenfaden, I. K., Jensen, K. H., & Sonnenborg, 2021) (Surmaini, 2016). Droughts are generally divided into three types: 1) meteorological droughts, which usually result from a lack of rainfall; 2) hydrological droughts, mainly caused by a lack of river flow and water storage; and 3) agricultural droughts, a combination of the two previous droughts caused by reduced soil moisture storage (Li, Y., Lu, H., Yang, K., Wang, W., Tang, Q., Khem, S., Yang, F., & Huang, 2021). Information about the current climate and climate projections in the future is a form of risk mitigation against the effects of climate change (Bellard, Bertelsmeier, Leadley, Thuiller, & Courchamp, 2012). Therefore, projections related to climate in the future are needed.

Insana Barat district is one of 21 sub-districts in Timor Tengah Utara Regency that experiences drought every year. In 2020, based on the calculation of the drought category according to the climate type of Schmidt and Ferguson, Insana Barat District is included in the dry category with a Q value or total monthly rainfall of 200 percent. The dry month or rainfall <60 mm per month is felt from April to November resulting in a decrease in water availability, water wells dry up so that to meet the community's clean water needs, it is obtained by buying.

Drought monitoring and analysis efforts can be carried out using the drought index (Herdita, 2020) (Febrianti, Murtilaksono, & Barus, 2018). World Meteorological Organization 2012 as the World Meteorological Agency recommends all national meteorological and hydrological agencies to use the Standardized Precipitation Index (SPI) method in monitoring drought levels. SPI is an index that is widely used in detecting meteorological drought and rainfall abnormalities based on rainfall series analysis (Tigkas, D., Vangelis, H., & Tsakiris, 2019). SPI is a drought index that has several characteristics and is an improvement from the previous index, including simplicity and temporal flexibility that allows its application to water resources at all time scales. SPI has several advantages, such as the data used for analysis is enough to use monthly rainfall data, which can be used to compare the level of drought between regions even with different climate types, so that it can be used as input to determine the impact of climate change on meteorological drought disasters in Insana District (Sudibyakto, 2018).

 

Research Methods

Study Area

Insana Barat District is one of the sub-districts in Timor Tengah Utara Regency. Insana Barat District has an area of 102 km2, which geographically is located at coordinates 90⁰ 32' 0" South Latitude � 90⁰ 23' 30� South Latitude and between 1240⁰ 29' 20" East Longitude - 1240⁰ 39' 40" East Longitude and is divided into 12 (twelve) villages including Subun Village, Lapeom, Usapinonot, Unini, Letneo, Banae, Atmen, South Letneo, Nifunenas, Subun Tualele, Subun Bestobe, Oabikase Village. The research locations are shown in Figure 1.

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Study Area

 

 

Data Set

In this research total 15 years of rainfall data have been used to estimate the Standardized Precipitation Index

(SPI). Month-wise average rainfall data from 2007 to 2020 has been collected from Regional Disaster Management Agency for Timor Tengah Utara Regency. Drought indices (SPI) can be calculated by minimum 15 years of rainfall datasets but in general, researchers used 30 years of data sets. SPI has also been successfully applied for Trends and variability of drought in the extended part of Chhota Nagpurplateau (Singbhum Protocontinent), India applying SPI and SPEI indices 1996�2020 (Bera, Shit, Sengupta, Saha, & Bhattacharjee, 2021).

 

Table 1

Monthly Rainfall In Insana Barat District 2007-2021

Years

Months

Average (mm)

Jan

Feb

March

April

May

June

July

August

Sept

Oct

Nov

Dec

2007

166

33

221

142

0

0

0

0

0

0

0

188

750

2008

183

133

225

64

12

26

0

0

0

20

0

0

663

2009

90

230

38

41

0

0

0

0

0

0

12

134

545

2010

308,5

327

105,7

4

0

0

0

0

0

0

0

81,8

827

2011

153

76

185

115

4

0

0

0

0

27

266

576

1402

2012

503

375

275

285

66

32

68

0

132

46

183

443

2408

2013

606

347

119

74

212

184

10

11

0

27

74

290

1954

2014

312

184

0

0

110

0

0

0

0

0

157

228

991

2015

266

206

191

56

10

59

0

0

0

0

0

82

870

2016

266

206

191

56

10

59

0

0

0

0

0

82

870

2017

57

211

132

14

138

44

64

0

43

0

96

202

1001

2018

140

184

216

193

10

18

0

0

0

0

85

315

1161

2019

142

194

348

257

15

17

10

0

0

20

418

514

1935

2020

122

119

82

4

60

21

0

0

0

0

0

98

506

2021

106

119

93

53

45

0

0

0

0

58

17

113

604

 

Source : Regional Disaster Management Agency for Timor Tengah Utara Regency data, 2021

Drought monitoring and analysis efforts can be carried out using the drought index. WMO (WMO, 2012) recommends all national meteorological and hydrological agencies use the SPI (Standardized Precipitation Index) method in monitoring drought levels. The SPI analysis uses rainfall data for the recording period of 15 years, namely between 2007 � 2021, using equations 1 to 10 with a monthly deficit period of 3 months, 6 months, and 12 months. Calculation of the dryness index Spi using the SPI value calculation is based on the number of gamma distributions which are defined as a function of frequency or probability of occurrence with the following equation:

���������������������������������������������������������������������������� ��������Equation 1

The values of and are estimated for each rain station using the following formula:

 

��������������������������������������������������������������������������������������������������������������������������� �������Equation 2

 

β = ������������������������������������������������������������������������������������������������������������������������������ �������Equation 3

Dimana:

g(x) ������ : function of the gamma distribution

x : the amount of rainfall (mm/month)

τ(α)�������� : gamma function

e : exponential

α : shape parameter

β ����������� : scale parameters

 

Since the gamma function is undefined for x = 0, the value of g(x) becomes

H(x)=q+(1-q)G(x),������� ����������������������������������������������������������������������� Equation 4������������������������������ ����������������������������������������������������������������������� �

q = m/n where m is the number of 0 mm rain events in the rain data series. If m is the number of months without rain during the study period, then q can be estimated by m/n. The cumulative probability H(x) is then transformed to a standard normal random variable Z with a mean of zero with a variance of one, which is defined as the SPI value.The gamma function is undefined if x = 0 and the rainfall distribution can contain zeros, then the cumulative probability can be calculated using the equation

�untuk 0 < H(x) ≤ 0.5�� ����������������������������������������������� Equation 4

������� � ��untuk 0.5 < H(x) < 1.0��������� ����������������������������������� ����Equation 5

Where q is the probability of an event without rain. If m is the number of months without rain during the study period, then q can be estimated by m/n. The cumulative probability H(x) is then transformed to a standard normal random variable Z with a mean of zero with a variance of one, which is defined as the SPI value.

SPI value calculation for 0 < H(x) 0.5

Z ������������������������������������������������������������� ����Equation 6

����� and distribution gamma transformation :���������������������� ���Equation 7

While the calculation of the SPI value for 0 < H(x) 0.5

�������������������������������������������������������������� Equation 8

and distribution gamma transformation: ������� ���� ���Equation 9

where :

c0= 2.515517
c1= 0.802853

d1= 1.432788
d2= 0.189269

c2= 0.010328

d3= 0.001308

 

Drought occurs when the SPI is continuously negative and reaches a drought intensity with an SPI of -1 or less. A positive SPI value indicates that the rainfall obtained is greater than the average rainfall, while a negative value indicates that the rainfall obtained is smaller than the average rainfall. The SPI method can be presented in normal, wet, and dry climates in the same way. According to McKee, 1993, the values for the SPI classification can be categorized as follows:

Table 2

Spi Index

Nilai

Kategori

> 2,00

Extremely wet

1.50 sd 1.99

Severely wet

1.00 sd 1.49

Moderately wet

-0.99 sd 0.99

Normal

−1.00 sd −1.49

Moderate drought

-1.50 sd -1.99

Severe drought

≤ −2.0

Extreme drought

Source: (Zhou et al., 2020)

 

Results and Discussion

The analysis involves 1 rain station located in Insana Barat District with a long recording period of 15 years. The results obtained show that every year for a period of 15 years with a deficit period of 3, 6 and 12 years, drought has entered a Very Very Dry condition with varying frequency of occurrence, which is indicated by an index value smaller than -2. Table 2 provides drought index values with a deficit duration of 3, 6, and 12 monthsn.

 

Table 3

Drought Index Value In Insana Barat District

c

SPI 3

Klasifikasi

SPI 6

Klasifikasi

SPI 12

Klasifikasi

2007

-3,377

ED

-2,070

EW

2,413

ED

2008

-1,842

ED

-1,994

ED

-1,648

ED

2009

-4,379

ED

-3,324

ED

-1,633

ED

2010

3,348

EW

2,331

EW

2,645

EW

2011

-3,467

ED

-2,624

EW

3,946

ED

2012

7,365

EW

7,373

EW

7,332

EW

2013

6,597

EW

7,411

EW

5,612

EW

2014

3,376

EW

1,647

EW

3,178

SW

2015

2,556

EW

2,624

EW

2,181

EW

2016

2,556

EW

2,237

EW

2,181

EW

2017

-3,681

ED

-2,395

EW

2,749

ED

2018

-1,853

ED

2,040

EW

3,011

EW

2019

2,769

EW

3,567

EW

6,347

EW

2020

-5,033

ED

-4,458

ED

-2,111

ED

2021

-5,132

ED

-3,716

ED

-2,191

ED

Description :

ED �= Extreme Drought

EW = Extremely Wet

SW = Severely Wet

 

The classification of drought in Insana Barat district in the deficit period of 3, 6, and 12 months within 15 years is classified into 3 classifications, namely, Extremely Wet (EW), Severely Wet (SW), and Extremely Dry ED). The highest frequency of drought occurred in the 3-month deficit period, namely the ED classification in 2007, 2008, 2009, 2011, 2017, 2018, 2020, and 2021 and the least drought occurred in the 6-month deficit period with the classification dominated by EW. This is because the calculation of the drought index only uses rain data and compares it to normal rain events in that location. So that when the rain decreases from its normal condition, even though it is still raining, it could result in a smaller index number or read as a drought event.

 

 

Figure �2

Result Of 3, 6, 12 Month Period Drought Index

 

 

Conclusion

A drought index with a deficit period of 3, 6, and 12 months can be used to describe the level of drought according to real conditions in the field. Evaluation of drought characteristics in Insana Barat District using the SPI method shows that Insana Barat District almost always experiences drought events every year with every deficit period and almost every year has experienced Extreme Drought events which are marked by a Drought Index smaller than -2. For further research, it is recommended to calculate the drought index using the Standardized Precipitation Index (SPI) with longer rainfall data and with a more complete number of rain stations according to the total number of rain stations in the research location district. This is done to obtain validation results that are more in line with real conditions in the field.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BIBLIOGRAPHY

 

Bellard, C�line, Bertelsmeier, Cleo, Leadley, Paul, Thuiller, Wilfried, & Courchamp, Franck. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4), 365�377.

 

Bera, Biswajit, Shit, Pravat Kumar, Sengupta, Nairita, Saha, Soumik, & Bhattacharjee, Sumana. (2021). Trends and variability of drought in the extended part of Chhota Nagpur plateau (Singbhum Protocontinent), India applying SPI and SPEI indices. Environmental Challenges, 5, 100310.

 

Chan, S. S., Seidenfaden, I. K., Jensen, K. H., & Sonnenborg, T. O. (2021). Climate change impacts and uncertainty on spatiotemporal variations of drought indices for an irrigated catchment. Journal of Hydrology, 601(February). https://doi.org/10.1016/j.jhydrol.2021.126814.

 

de Oliveira-J�nior, J. F., de Gois, G., de Bodas Terassi, P. M., da Silva Junior, C. A., Blanco, C. J. C., Sobral, B. S., & Gasparini, K. A. C. (2018). Drought severity is based on the SPI index and its relation to the ENSO and PDO climatic variability modes in the regions North and Northwest of the State of Rio de Janeiro - Brazil. Atmospheric Research, 212(2017), 91�105. https://doi.org/10.1016/j.atmos.

 

Febrianti, Nur, Murtilaksono, Kukuh, & Barus, Baba. (2018). Model estimasi tinggi muka air tanah lahan gambut menggunakan indeks kekeringan. Jurnal Penginderaan Jauh Dan Pengolahan Data Citra Digital, 15(1), 25�36.

 

Herdita, Chintya Ayu Permata. (2020). Analisia Kekeringan Meteorologi dengan Menggunakan Metode Standardized Preecipitation Index (SPI) dan Effecive Drought Index (EDI) di DAS Ngrowo. Universitas Brawijaya.

 

Hidayati, Deny. (2017). Memudarnya nilai kearifan lokal masyarakat dalam pengelolaan sumber daya air. Jurnal Kependudukan Indonesia, 11(1), 39-48Hidayati, D. (2017). Memudarnya nilai kearifa.

 

Li, Y., Lu, H., Yang, K., Wang, W., Tang, Q., Khem, S., Yang, F., & Huang, Y. (2021). Meteorological and hydrological droughts in Mekong River Basin and surrounding areas under climate change. Journal of Hydrology: Regional Studies, 36(July), 100873. https://doi.org/10.1016/j.ejrh.2021.100873.

 

Pangestu, Siti Yuniar, & Gernowo, Rahmat. (2015). Evaluasi Model Jaringan Syaraf Tiruan Metode Backpropagation untuk Prediksi Iklim Ekstrim dengan Korelasi Curah Hujan dan Tinggi Muka Laut di Semarang. Youngster Physics Journal, 4(1), 67�72.

 

Sudibyakto, H. A. (2018). Manajemen bencana di Indonesia ke mana? UGM PRESS.

 

Surmaini, Elza. (2016). Pemantauan dan peringatan dini kekeringan pertanian di Indonesia. Jurnal Sumberdaya Lahan, 10(1), 37�50.

 

Sutrisno, N., & Hamdani, A. (2019). Optimalisasi pemanfaatan sumber daya air untuk meningkatkan produksi pertanian. Jurnal Sumberdaya Lahan, 13(2), 73-88.

 

Tigkas, D., Vangelis, H., & Tsakiris, G. (2019). Drought characterisation based on an agriculture-oriented standardized precipitation index. Theoretical and Applied Climatology, 135(3�4), 1435�1447. https://doi.org/10.1007/s00704-018-2451-3.

 

WMO, �. (2012). World Meteorological Organization. Greenhouse Gas Bulletin (GHG Bulletin): The State of Greenhouse Gases in the Atmosphere Based on Global Observations Though, (8), 1�4.

 

Zhou, Han, Zhou, Wen, Liu, Yuanbo, Yuan, Yanbin, Huang, Jiejun, & Liu, Yongwei. (2020). Identifying spatial extent of meteorological droughts: An examination over a humid region. Journal of Hydrology, 591(September), 125505. https://doi.org/10.1016/j.jhydrol.2020.125505

 

Copyright holder:

Maria Serlince Sanit, Turningtyas Ayu Rachmawati,

Nailah Firdausiyah (2022)

 

First publication right:

Syntax Literate: Jurnal Ilmiah Indonesia

 

This article is licensed under: