Syntax Literate: Jurnal Ilmiah Indonesia p�ISSN: 2541-0849 e-ISSN:
2548-1398
Vol. 8, No. 1, Januari 2023
IMPACT OF CLIMATE CHANGE ON METEOROLOGICAL DROUGHT
IN INSANA BARAT DISTRICT, TIMOR TENGAH UTARA, EAST NUSA TENGGARA
Maria Serlince Sanit, Turningtyas Ayu Rachmawati, Nailah Firdausiyah
Brawijaya University, Malang, Indonesia.
Email: [email protected],
[email protected], [email protected]����
����� ����������������������
Abstract
Uncertain climate change
has an impact on the limited availability of surface water and low rainfall,
causing� Insana Barat District to become
one of the areas prone to drought. Drought is a cause of poverty because it is
usually associated with the cycle and spread of disease and threats to food
security. Therefore, it is necessary to identify drought characteristics in
this region for early anticipation and adaptation to reduce the impact of
drought due to current and future climate variability. The Standardized
Precipitation Index (SPI) is an index used to determine the deviation of
rainfall from normal over a long period. The SPI method was chosen because of
its ability to calculate the index and describe the severity of drought, and it
is simpler than other methods. The advantage of SPI is that it is sufficient to
use monthly rainfall data to compare drought levels between regions even with
different climate types. The data used in this study is rain data from rain
stations located in Insana Barat District from 2007 to 2021. The results show
that in the drought deficit period the deficit period is 3 months in 2021 with
an index value of -5.123. The worst 6-month deficit period for the -4,458 index
occurred in 2020. The worst 12-month drought index deficit period of -2,191
occurred in 2021.
Keywords: Android, Google Maps, Tickets, Apps.
Introduction
Climate change is characterized by increasing temperatures, rainfall, and more extreme climatological events (de Oliveira-J�nior, J. F., de Gois, G., de Bodas Terassi, P. M., da Silva Junior, C. A., Blanco, C. J. C., Sobral, B. S., & Gasparini, 2018) Climate change is a phenomenon natural influences on stability atmosphere (Pangestu & Gernowo, 2015). These changes, pose major challenges for agricultural production and water resources (Hidayati, 2017) (Sutrisno, N., & Hamdani, 2019). Droughts are natural disasters that can occur anywhere, cause prolonged periods of water shortage in various parts or throughout the hydrological cycle, and can be modulated or amplified by other natural processes and human activities (Chan, S. S., Seidenfaden, I. K., Jensen, K. H., & Sonnenborg, 2021) (Surmaini, 2016). Droughts are generally divided into three types: 1) meteorological droughts, which usually result from a lack of rainfall; 2) hydrological droughts, mainly caused by a lack of river flow and water storage; and 3) agricultural droughts, a combination of the two previous droughts caused by reduced soil moisture storage (Li, Y., Lu, H., Yang, K., Wang, W., Tang, Q., Khem, S., Yang, F., & Huang, 2021). Information about the current climate and climate projections in the future is a form of risk mitigation against the effects of climate change (Bellard, Bertelsmeier, Leadley, Thuiller, & Courchamp, 2012). Therefore, projections related to climate in the future are needed.
Insana Barat district is one of 21 sub-districts in Timor Tengah Utara Regency that experiences drought every year. In 2020, based on the calculation of the drought category according to the climate type of Schmidt and Ferguson, Insana Barat District is included in the dry category with a Q value or total monthly rainfall of 200 percent. The dry month or rainfall <60 mm per month is felt from April to November resulting in a decrease in water availability, water wells dry up so that to meet the community's clean water needs, it is obtained by buying.
Drought monitoring and analysis efforts can be carried out using the drought index (Herdita, 2020) (Febrianti, Murtilaksono, & Barus, 2018). World Meteorological Organization 2012 as the World Meteorological Agency recommends all national meteorological and hydrological agencies to use the Standardized Precipitation Index (SPI) method in monitoring drought levels. SPI is an index that is widely used in detecting meteorological drought and rainfall abnormalities based on rainfall series analysis (Tigkas, D., Vangelis, H., & Tsakiris, 2019). SPI is a drought index that has several characteristics and is an improvement from the previous index, including simplicity and temporal flexibility that allows its application to water resources at all time scales. SPI has several advantages, such as the data used for analysis is enough to use monthly rainfall data, which can be used to compare the level of drought between regions even with different climate types, so that it can be used as input to determine the impact of climate change on meteorological drought disasters in Insana District (Sudibyakto, 2018).
Research Methods
Study Area
Insana Barat District is one of the sub-districts in Timor Tengah Utara Regency. Insana Barat District has an area of 102 km2, which geographically is located at coordinates 90⁰ 32' 0" South Latitude � 90⁰ 23' 30� South Latitude and between 1240⁰ 29' 20" East Longitude - 1240⁰ 39' 40" East Longitude and is divided into 12 (twelve) villages including Subun Village, Lapeom, Usapinonot, Unini, Letneo, Banae, Atmen, South Letneo, Nifunenas, Subun Tualele, Subun Bestobe, Oabikase Village. The research locations are shown in Figure 1.
Figure 1.
Study Area
Data Set
In
this research total 15 years of rainfall data have been used to estimate the
Standardized Precipitation Index
(SPI).
Month-wise average rainfall data from 2007 to 2020 has been collected from
Regional Disaster Management Agency for Timor Tengah Utara Regency. Drought
indices (SPI) can be calculated by minimum 15 years of rainfall datasets but in
general, researchers used 30 years of data sets. SPI has also been successfully
applied for Trends and variability of drought in the extended part of Chhota
Nagpurplateau (Singbhum Protocontinent), India applying SPI and SPEI indices
1996�2020 (Bera, Shit, Sengupta, Saha, & Bhattacharjee, 2021).
Table 1
Monthly
Rainfall In Insana Barat District 2007-2021
Years |
Months |
Average (mm) |
|||||||||||
Jan |
Feb |
March |
April |
May |
June |
July |
August |
Sept |
Oct |
Nov |
Dec |
||
2007 |
166 |
33 |
221 |
142 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
188 |
750 |
2008 |
183 |
133 |
225 |
64 |
12 |
26 |
0 |
0 |
0 |
20 |
0 |
0 |
663 |
2009 |
90 |
230 |
38 |
41 |
0 |
0 |
0 |
0 |
0 |
0 |
12 |
134 |
545 |
2010 |
308,5 |
327 |
105,7 |
4 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
81,8 |
827 |
2011 |
153 |
76 |
185 |
115 |
4 |
0 |
0 |
0 |
0 |
27 |
266 |
576 |
1402 |
2012 |
503 |
375 |
275 |
285 |
66 |
32 |
68 |
0 |
132 |
46 |
183 |
443 |
2408 |
2013 |
606 |
347 |
119 |
74 |
212 |
184 |
10 |
11 |
0 |
27 |
74 |
290 |
1954 |
2014 |
312 |
184 |
0 |
0 |
110 |
0 |
0 |
0 |
0 |
0 |
157 |
228 |
991 |
2015 |
266 |
206 |
191 |
56 |
10 |
59 |
0 |
0 |
0 |
0 |
0 |
82 |
870 |
2016 |
266 |
206 |
191 |
56 |
10 |
59 |
0 |
0 |
0 |
0 |
0 |
82 |
870 |
2017 |
57 |
211 |
132 |
14 |
138 |
44 |
64 |
0 |
43 |
0 |
96 |
202 |
1001 |
2018 |
140 |
184 |
216 |
193 |
10 |
18 |
0 |
0 |
0 |
0 |
85 |
315 |
1161 |
2019 |
142 |
194 |
348 |
257 |
15 |
17 |
10 |
0 |
0 |
20 |
418 |
514 |
1935 |
2020 |
122 |
119 |
82 |
4 |
60 |
21 |
0 |
0 |
0 |
0 |
0 |
98 |
506 |
2021 |
106 |
119 |
93 |
53 |
45 |
0 |
0 |
0 |
0 |
58 |
17 |
113 |
604 |
Source : Regional Disaster
Management Agency for Timor Tengah Utara Regency data, 2021
Drought monitoring and analysis efforts can be carried out using the drought index. WMO (WMO, 2012) recommends all national meteorological and hydrological agencies use the SPI (Standardized Precipitation Index) method in monitoring drought levels. The SPI analysis uses rainfall data for the recording period of 15 years, namely between 2007 � 2021, using equations 1 to 10 with a monthly deficit period of 3 months, 6 months, and 12 months. Calculation of the dryness index Spi using the SPI value calculation is based on the number of gamma distributions which are defined as a function of frequency or probability of occurrence with the following equation:
���������������������������������������������������������������������������� ��������Equation 1
The
values of and are estimated for each rain station using the following formula:
��������������������������������������������������������������������������������������������������������������������������� �������Equation 2
β = ������������������������������������������������������������������������������������������������������������������������������ �������Equation 3
Dimana:
g(x) ������ :
function of the gamma distribution
x : the
amount of rainfall (mm/month)
τ(α)�������� :
gamma function
e : exponential
α : shape
parameter
β ����������� :
scale parameters
Since the gamma function is undefined for x =
0, the value of g(x) becomes
H(x)=q+(1-q)G(x),������� ����������������������������������������������������������������������� Equation
4������������������������������ ����������������������������������������������������������������������� �
q = m/n where m is the number of 0
mm rain events in the rain data series. If m is the number of months without
rain during the study period, then q can be estimated by m/n. The cumulative
probability H(x) is then transformed to a standard normal random variable Z
with a mean of zero with a variance of one, which is defined as the SPI value.The
gamma function is undefined if x = 0 and the rainfall distribution can contain
zeros, then the cumulative probability can be calculated using the equation
�untuk 0 < H(x) ≤ 0.5�� ����������������������������������������������� Equation 4
������� � ��untuk
0.5 < H(x) < 1.0��������� ����������������������������������� ����Equation 5
Where q is the probability of an
event without rain. If m is the number of months without rain during the study
period, then q can be estimated by m/n. The cumulative probability H(x) is then
transformed to a standard normal random variable Z with a mean of zero with a
variance of one, which is defined as the SPI value.
SPI value calculation for 0 <
H(x) 0.5
Z ������������������������������������������������������������� ����Equation 6
����� and distribution gamma transformation :���������������������� ���Equation 7
While the calculation of the SPI
value for 0 < H(x) 0.5
�������������������������������������������������������������� Equation
8
and distribution gamma
transformation: ������� ���� ���Equation 9
where :
c0= 2.515517 |
d1= 1.432788 |
c2= 0.010328 |
d3= 0.001308 |
Drought occurs when the SPI is continuously
negative and reaches a drought intensity with an SPI of -1 or less. A positive
SPI value indicates that the rainfall obtained is greater than the average
rainfall, while a negative value indicates that the rainfall obtained is
smaller than the average rainfall. The SPI method can be presented in normal,
wet, and dry climates in the same way. According to McKee, 1993, the values for
the SPI classification can be categorized as follows:
Table
2 Spi
Index |
|
Nilai |
Kategori |
> 2,00 |
Extremely wet |
1.50 sd 1.99 |
Severely wet |
1.00 sd 1.49 |
Moderately wet |
-0.99 sd 0.99 |
Normal |
−1.00 sd −1.49 |
Moderate drought |
-1.50 sd -1.99 |
Severe drought |
≤ −2.0 |
Extreme drought |
Source: (Zhou et al., 2020)
Results
and Discussion
The analysis involves 1 rain station located in Insana Barat District with a long recording period of 15 years. The results obtained show that every year for a period of 15 years with a deficit period of 3, 6 and 12 years, drought has entered a Very Very Dry condition with varying frequency of occurrence, which is indicated by an index value smaller than -2. Table 2 provides drought index values with a deficit duration of 3, 6, and 12 monthsn.
Drought
Index Value In Insana Barat District |
|||||||
c |
SPI 3 |
Klasifikasi |
SPI 6 |
Klasifikasi |
SPI 12 |
Klasifikasi |
|
2007 |
-3,377 |
ED |
-2,070 |
EW |
2,413 |
ED |
|
2008 |
-1,842 |
ED |
-1,994 |
ED |
-1,648 |
ED |
|
2009 |
-4,379 |
ED |
-3,324 |
ED |
-1,633 |
ED |
|
2010 |
3,348 |
EW |
2,331 |
EW |
2,645 |
EW |
|
2011 |
-3,467 |
ED |
-2,624 |
EW |
3,946 |
ED |
|
2012 |
7,365 |
EW |
7,373 |
EW |
7,332 |
EW |
|
2013 |
6,597 |
EW |
7,411 |
EW |
5,612 |
EW |
|
2014 |
3,376 |
EW |
1,647 |
EW |
3,178 |
SW |
|
2015 |
2,556 |
EW |
2,624 |
EW |
2,181 |
EW |
|
2016 |
2,556 |
EW |
2,237 |
EW |
2,181 |
EW |
|
2017 |
-3,681 |
ED |
-2,395 |
EW |
2,749 |
ED |
|
2018 |
-1,853 |
ED |
2,040 |
EW |
3,011 |
EW |
|
2019 |
2,769 |
EW |
3,567 |
EW |
6,347 |
EW |
|
2020 |
-5,033 |
ED |
-4,458 |
ED |
-2,111 |
ED |
|
2021 |
-5,132 |
ED |
-3,716 |
ED |
-2,191 |
ED |
|
Description : |
ED �= Extreme Drought |
||||||
EW = Extremely Wet |
|||||||
SW = Severely Wet |
|||||||
|
|
Figure �2
Result Of 3, 6, 12 Month Period Drought Index
Bellard, C�line, Bertelsmeier, Cleo, Leadley, Paul,
Thuiller, Wilfried, & Courchamp, Franck. (2012). Impacts of climate change
on the future of biodiversity. Ecology Letters, 15(4), 365�377.
Bera, Biswajit, Shit,
Pravat Kumar, Sengupta, Nairita, Saha, Soumik, & Bhattacharjee, Sumana.
(2021). Trends and variability of drought in the extended part of Chhota Nagpur
plateau (Singbhum Protocontinent), India applying SPI and SPEI indices. Environmental
Challenges, 5, 100310.
Chan, S. S.,
Seidenfaden, I. K., Jensen, K. H., & Sonnenborg, T. O. (2021). Climate
change impacts and uncertainty on spatiotemporal variations of drought indices
for an irrigated catchment. Journal of Hydrology, 601(February). https://doi.org/10.1016/j.jhydrol.2021.126814.
de Oliveira-J�nior, J.
F., de Gois, G., de Bodas Terassi, P. M., da Silva Junior, C. A., Blanco, C. J.
C., Sobral, B. S., & Gasparini, K. A. C. (2018). Drought severity is
based on the SPI index and its relation to the ENSO and PDO climatic
variability modes in the regions North and Northwest of the State of Rio de
Janeiro - Brazil. Atmospheric Research, 212(2017), 91�105.
https://doi.org/10.1016/j.atmos.
Febrianti, Nur,
Murtilaksono, Kukuh, & Barus, Baba. (2018). Model estimasi tinggi muka air
tanah lahan gambut menggunakan indeks kekeringan. Jurnal Penginderaan Jauh
Dan Pengolahan Data Citra Digital, 15(1), 25�36.
Herdita, Chintya Ayu
Permata. (2020). Analisia Kekeringan Meteorologi dengan Menggunakan Metode
Standardized Preecipitation Index (SPI) dan Effecive Drought Index (EDI) di DAS
Ngrowo. Universitas Brawijaya.
Hidayati, Deny.
(2017). Memudarnya nilai kearifan lokal masyarakat dalam pengelolaan sumber
daya air. Jurnal Kependudukan Indonesia, 11(1), 39-48Hidayati, D.
(2017). Memudarnya nilai kearifa.
Li, Y., Lu, H., Yang,
K., Wang, W., Tang, Q., Khem, S., Yang, F., & Huang, Y. (2021). Meteorological
and hydrological droughts in Mekong River Basin and surrounding areas under
climate change. Journal of Hydrology: Regional Studies, 36(July), 100873.
https://doi.org/10.1016/j.ejrh.2021.100873.
Pangestu, Siti Yuniar,
& Gernowo, Rahmat. (2015). Evaluasi Model Jaringan Syaraf Tiruan Metode
Backpropagation untuk Prediksi Iklim Ekstrim dengan Korelasi Curah Hujan dan Tinggi
Muka Laut di Semarang. Youngster Physics Journal, 4(1), 67�72.
Sudibyakto, H. A.
(2018). Manajemen bencana di Indonesia ke mana? UGM PRESS.
Surmaini, Elza.
(2016). Pemantauan dan peringatan dini kekeringan pertanian di Indonesia. Jurnal
Sumberdaya Lahan, 10(1), 37�50.
Sutrisno, N., &
Hamdani, A. (2019). Optimalisasi pemanfaatan sumber daya air untuk meningkatkan
produksi pertanian. Jurnal Sumberdaya Lahan, 13(2), 73-88.
Tigkas, D., Vangelis,
H., & Tsakiris, G. (2019). Drought characterisation based on an
agriculture-oriented standardized precipitation index. Theoretical and Applied
Climatology, 135(3�4), 1435�1447. https://doi.org/10.1007/s00704-018-2451-3.
WMO, �. (2012). World
Meteorological Organization. Greenhouse Gas Bulletin (GHG Bulletin): The State
of Greenhouse Gases in the Atmosphere Based on Global Observations Though,
(8), 1�4.
Zhou, Han, Zhou, Wen,
Liu, Yuanbo, Yuan, Yanbin, Huang, Jiejun, & Liu, Yongwei. (2020).
Identifying spatial extent of meteorological droughts: An examination over a humid
region. Journal of Hydrology, 591(September), 125505.
https://doi.org/10.1016/j.jhydrol.2020.125505
Copyright holder: Maria
Serlince Sanit, Turningtyas Ayu Rachmawati, Nailah
Firdausiyah (2022) |
First publication right: Syntax Literate:
Jurnal Ilmiah Indonesia |
This article is licensed under: |